Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holm oaks will gain ground in northern forests due to climate change

09.11.2011
Holm oaks and other forests in lowland areas of Mediterranean mountains could expand by up to 350% due to global warming.

In contrast, those forest formations that are more adapted to cold and humid conditions, such as beech and Sylvester pines, could shrink by up to 99%. Both scenarios could be quite possible in the 21st century according to a model created to study the effects of climate change on the forests of the Sistema Central and the Sistema Ibérico (Spain).

A team led from the Complutense University of Madrid has estimated the possible changes that could be seen in the distribution of 15 of the Iberian Peninsula´s tree species due to climate change from 2041-2070 and 2071-2100. According to what was published in the Journal of Biogeography they used two of the CO2 emissions models of the Intergovernmental Panel on Climate Change (IPCC) when making their estimations.

The main researcher of the study, Diego Ruiz-Labourdette, tells SINC that "the results predict an increase in arid conditions across low mountain areas in the coming decades. This will favour the expansion of Mediterranean perennial species like the holm oak, juniper, the Portuguese oak and the Pyrenean oak, which are better adapted to high temperatures and drought."

These plant communities could increase their dominance by up to 350% with CO2 atmosphere concentrations 0.70 mg/g by 2080 according to one of the scenarios generated by the models. The predictions suggest that spring will progressively arrive earlier, autumn will arrive later and there will be increased summer water shortages in the Iberian Peninsula during the 21st century.

As a result, the models reveal that there will be a reduction in the amount of deciduous forests with trees such as beech and birch, which are adapted to humidity. Eurosiberian conifers (Sylvester pine, high mountain juniper), native to Central and Northern Europe, will also see their distribution area progressively reduced. On the whole, those species adapted to cold and humid conditions could fall by between 80% and 99%.

Researchers outline that the results of the study would have "a significant impact on biodiversity conversation." They propose to prioritise the protection of the eastern massifs of the Sistema Central and its connection with the Sistema Ibérico in order to preserve those tree species found there that are adapted to cold and humid climates. In this way, the mobility of the species through their historic migration paths would be encouraged.

"The study also reveals that in the mountains of the south of Europe the plant formations that will suffer most in terms of distribution will be those found in foothills and low mountain areas. This is due to the increase in water shortages during the season that is good for growth," says another of the co-authors of the study, David Nogués-Bravo, researcher at the University of Copenhagen (Denmark).

This prediction differs from that of the mountain ranges of the temperate regions of Northern Europe. There, the high mountain vegetation will be more affected by climate change, not the vegetation of the lowland areas.

References:

Diego Ruiz-Labourdette, David Nogués-Bravo, Helios Saínz Ollero, María F. Schmitz, Francisco D. Pineda. "Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change". Journal of Biogeography, September 2011 (on line). Doi: 10.1111/j.1365-2699.2011.02592.x

SINC | EurekAlert!
Further information:
http://www.fecyt.es

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>