Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holm oaks will gain ground in northern forests due to climate change

09.11.2011
Holm oaks and other forests in lowland areas of Mediterranean mountains could expand by up to 350% due to global warming.

In contrast, those forest formations that are more adapted to cold and humid conditions, such as beech and Sylvester pines, could shrink by up to 99%. Both scenarios could be quite possible in the 21st century according to a model created to study the effects of climate change on the forests of the Sistema Central and the Sistema Ibérico (Spain).

A team led from the Complutense University of Madrid has estimated the possible changes that could be seen in the distribution of 15 of the Iberian Peninsula´s tree species due to climate change from 2041-2070 and 2071-2100. According to what was published in the Journal of Biogeography they used two of the CO2 emissions models of the Intergovernmental Panel on Climate Change (IPCC) when making their estimations.

The main researcher of the study, Diego Ruiz-Labourdette, tells SINC that "the results predict an increase in arid conditions across low mountain areas in the coming decades. This will favour the expansion of Mediterranean perennial species like the holm oak, juniper, the Portuguese oak and the Pyrenean oak, which are better adapted to high temperatures and drought."

These plant communities could increase their dominance by up to 350% with CO2 atmosphere concentrations 0.70 mg/g by 2080 according to one of the scenarios generated by the models. The predictions suggest that spring will progressively arrive earlier, autumn will arrive later and there will be increased summer water shortages in the Iberian Peninsula during the 21st century.

As a result, the models reveal that there will be a reduction in the amount of deciduous forests with trees such as beech and birch, which are adapted to humidity. Eurosiberian conifers (Sylvester pine, high mountain juniper), native to Central and Northern Europe, will also see their distribution area progressively reduced. On the whole, those species adapted to cold and humid conditions could fall by between 80% and 99%.

Researchers outline that the results of the study would have "a significant impact on biodiversity conversation." They propose to prioritise the protection of the eastern massifs of the Sistema Central and its connection with the Sistema Ibérico in order to preserve those tree species found there that are adapted to cold and humid climates. In this way, the mobility of the species through their historic migration paths would be encouraged.

"The study also reveals that in the mountains of the south of Europe the plant formations that will suffer most in terms of distribution will be those found in foothills and low mountain areas. This is due to the increase in water shortages during the season that is good for growth," says another of the co-authors of the study, David Nogués-Bravo, researcher at the University of Copenhagen (Denmark).

This prediction differs from that of the mountain ranges of the temperate regions of Northern Europe. There, the high mountain vegetation will be more affected by climate change, not the vegetation of the lowland areas.

References:

Diego Ruiz-Labourdette, David Nogués-Bravo, Helios Saínz Ollero, María F. Schmitz, Francisco D. Pineda. "Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change". Journal of Biogeography, September 2011 (on line). Doi: 10.1111/j.1365-2699.2011.02592.x

SINC | EurekAlert!
Further information:
http://www.fecyt.es

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>