Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How HIV vaccine might have increased odds of infection

04.11.2008
In September 2007, a phase II HIV-1 vaccine trial was abruptly halted when researchers found that the vaccine may have promoted, rather than prevented, HIV infection.

A new study by a team of researchers at the Montpellier Institute of Molecular Genetics in France shows how the vaccine could have enhanced HIV infection. The study, lead by Matthieu Perreau, will be published online on November 3 of the Journal of Experimental Medicine.

The HIV-1 vaccine used in Merck's STEP trial relied on a weakened form of a common cold virus, Adenovirus 5 (Ad5), to carry bits of HIV into the body. Those bits would presumably trigger the immune system to fight off later infection with the virus.

One worry about the Ad5 vaccine vector was that widespread immunity to adenoviruses might cause the vaccine to be ousted from the body before an anti-HIV response could develop. Yet three years after the trial began, researchers realized that more of the vaccine recipients who had prior immunity to adenoviruses had been infected with HIV than those without such immunity.

The new study shows how the presence of long-lasting Ad5-specific antibodies—generated during natural infections with adenoviruses—may have altered the immune response to the HIV vaccine. In the presence of antibodies from Ad5-immune individuals, HIV infection spread through cell cultures three times faster than without them.

The antibodies tethered the Ad5-HIV vaccine to receptors on the surface of specialized immune cells, called antigen-presenting cells (APCs), thus facilitating entry of the vaccine into the cell. Once inside, components of the vaccine then activated these cells, allowing the APCs in turn to activate T cells. Since HIV prefers to infect active T cells, the virus was thus provided with more cells to infect.

Merck's vaccine may have made it to phase II trials because primates, used in the phase 1 trials, don't naturally come in contact with human adenoviruses, and therefore the potential problem went unrecognized.

Heather Van Epps | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: APCs Ad5 Ad5-specific antibodies Adenovirus 5 HIV HIV infection HIV vaccine HIV-1 T cells immune cell

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>