Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

History to Blame for Slow Crop Taming: Study

06.05.2014

It’s been about 10,000 years since our ancestors began farming, but crop domestication has taken much longer than expected – a delay caused less by genetics and more by culture and history, according to a new study co-authored by University of Guelph researchers.

The new paper digs at the roots not just of crop domestication but of civilization itself, says plant agriculture professor Lewis Lukens. “How did humans get food? Without domestication – without food – it’s hard for populations to settle down,” he said. “Domestication was the key for all subsequent human civilization.”

The study appears this the current issue of the Proceedings of the National Academy of Sciences.

Lukens and Guelph PhD student Ann Meyer worked on the study with biologists at Oklahoma State University and Washington State University.

Examining crop domestication tells us how our ancestors developed food, feed and fibre leading to today’s crops and products. Examining crop genetics might also help breeders and farmers looking to further refine and grow more crops for an expanding human population.

“This work is largely historical, but there are increasing demands for food production, and understanding the genetic basis of past plant improvement should help future efforts,” he said.

The Guelph team analyzed data from earlier studies of domesticated cereal crop species, and the American scientists also performed field tests.

To study the historical effects of interactions between genes and between genes and the environment, they looked at genes controlling several crop plant traits.

Domestication has yielded modern crops whose seeds resist shattering, such as corn whose kernels stay on the cob instead of falling off. Early agriculturalists also shortened flowering time for crops, necessary in shorter growing seasons as in Canada.

Domestication traits are known to have developed more slowly than expected over the past 10,000 years. The researchers wondered whether genetic factors hindered transmission of genes controlling such traits. Instead, they found that domestication traits are often faithfully passed from parent to progeny, and often more so than ancestral traits, said Lukens.

That suggests cultural and historical factors – anything from war and famine to lack of communication among separated populations – accounted for the creeping rate of domestication.

“We conclude that the slow adaptation of domesticated plants by humans was likely due to historical factors that limited technological progress,” said Lukens.

This research project stemmed from a meeting of anthropologists, archeobotanists and geneticists at the National Evolutionary Synthesis Center in North Carolina.

Contact:
Prof. Lewis Lukens
Department of Plant Agriculture
llukens@uoguelph.ca
519 824-4120, Ext. 52304 or 58164


For media questions, contact Communications and Public Affairs: Lori Bona Hunt, 519-824-4120, Ext. 53338, or lhunt@uoguelph.ca; or Kevin Gonsalves, Ext. 56982, or kgonsalves@uoguelph.ca

Lewis Lukens | Eurek Alert!
Further information:
http://www.uoguelph.ca

Further reports about: Blame Evolutionary ancestors crop domestication farmers humans populations traits

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>