Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highways of the Brain: High-Cost and High-Capacity

20.06.2012
A new study proposes a communication routing strategy for the brain that mimics the American highway system, with the bulk of the traffic leaving the local and feeder neural pathways to spend as much time as possible on the longer, higher-capacity passages through an influential network of hubs, the so-called rich club.

The study, published this week online in the Early Edition of the Proceedings of the National Academy of Sciences, involves researchers from Indiana University and the University Medical Center Utrecht in the Netherlands and advances their earlier findings that showed how select hubs in the brain not only are powerful in their own right but have numerous and strong connections between each other.

The current study characterizes the influential network within the rich club as the "backbone" for global brain communication. A costly network in terms of the energy and space consumed, said Olaf Sporns, professor in the Department of Psychological and Brain Sciences at IU Bloomington, but one with a big pay-off: providing quick and effective communication between billions and billions of brain cells.

"Until now, no one knew how central the brain's rich club really was," Sporns said. "It turns out the rich club is always right in the middle when it comes to how brain regions talk to each other. It absorbs, transforms and disseminates information. This underscores its importance for brain communication."

In earlier work, using diffusion imaging, the researchers found a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen and thalamus. Together, these regions form the brain's "rich club." Most of these areas are engaged in a wide range of complex behavioral and cognitive tasks, rather than more specialized processing such as vision and motor control.

For the current study, Martijn van den Heuvel, a professor at the Rudolf Magnus Institute of Neuroscience at University Medical Center Utrecht, used diffusion tensor imaging data for two sets of 40 healthy subjects to map the large-scale connectivity structure of the brain. The cortical sheet was divided into 1,170 regions, and then pathways between the regions were reconstructed and measured. As in the previous study, the rich club nodes were widely distributed and had up to 40 percent more connectivity compared to other areas.

The connections measured -- almost 700,000 in total -- were classified in one of three ways: as rich club connections if they connected nodes within the rich club; as feeder connections if they connected a non-rich club node to a rich club node; and as local connections if they connected non-rich club nodes. Rich club connections made up the majority of all long-distance neural pathways. The study also found that connections classified as rich club connections were used more heavily for communication than other feeder and local connections. A path analysis showed that when a minimally short path is traced from one area of the brain to another, it travels through the rich club network 69 percent of the time, even though the network accounts for only 10 percent of the brain.

A common pattern in communication paths spanning long distances, Sporns said, was that such paths involved sequences of steps leading across local, feeder, rich club, feeder and back to local connections. In other words, he said, many communication paths first traveled toward the rich club before reaching their destinations.

"It is as if the rich club acts as an attractor for signal traffic in the brain," Sporns said. "It soaks up information which is then integrated and sent back out to the rest of the brain."

Van den Heuvel agreed.

"It's like a big 'neuronal magnet' for communication and information integration in our brains," he said. "Seeking out the rich club may offer a strategy for neurons and brain regions to find short communication paths across the brain, and might provide insight into how our brain manages to be so highly efficient."

From an evolutionary standpoint, it was important for the brain to minimize energy consumption and wiring volume, but if these were the only factors, there would be no rich club because of the extra resources it requires, Sporns said. The rich club is expensive, at least in terms of wiring volume, and perhaps also in terms of metabolic cost. The trade-off for higher cost, Sporns said, is higher performance -- the integration of diverse signals and the ability to select short paths across the network.

"Brain neurons don't have maps; how do they find paths to get in touch? Perhaps the rich club helps with this, offering the brain's neurons and regions a way to communicate efficiently based on a routing strategy that involves the rich club."

People use related strategies to navigate social networks.

"Strangely, neurons may solve their communication problems just like the people to which they belong," Sporns said.

Co-authors of "High-cost, high-capacity backbone for global brain communication" are Rene S. Kahn, University Medical Center, Utrecht; and Joaquin Goni, Indiana University.

Van den Heuvel was supported by a Fellowship of the Rudolf Magnus Institute of Neuroscience and by the Dutch Brain foundation. Sporns and Goñi were supported by the JS McDonnell Foundation.

A copy of the study is available through Eurekalert. For additional assistance, contact Tracy James, IU Communications, at 812-855-0084 or traljame@iu.edu.

Sporns can be reached at 812-855-2772 or osporns@indiana.edu. Van den Heuvel can be reached at 31 88-75-58244 or m.p.vandenheuvel@umcutrecht.nl

Tracy James | Newswise Science News
Further information:
http://www.iu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>