Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Rise Fire Study Provides Insight Into Deadly Wind-Driven Fires

11.05.2009
Fire researchers at NIST have just published two reports providing details of how wind affects fires in high-rise buildings.

Fire researchers at the National Institute of Standards and Technology (NIST) have just published two reports providing details of how wind affects fires in high-rise buildings. A set of instructional DVDs based on the research is available for firefighter training, and will lead to improved safety for civilian and firefighters.

While much is known about wind’s impact on outdoor blazes, little has been known about how a fire rapidly turns into a “blowtorch” —firefighter’s parlance—when a blast of wind enters through a broken window, particularly in high-rise buildings.

Thousands of high-rise apartment fires occur annually. Beginning in one room, a fire can quickly spread smoke, heat and gases through hallways and stairwells, limiting the occupants’ chances to escape and the firefighters’ ability to rescue them. NIST researchers conducted a series of experiments to study the effect of wind on high-rise fires—buildings seven stories and taller—and potential techniques for fighting these fires.

Eight experiments were conducted in NIST’s Large Fire Laboratory, where conditions were controlled and measured. “These tests demonstrated that wind and a simple room and contents’ fire can be extended when wind and an open vent are present,” explained Fire Protection Engineer Dan Madrzykowski. “The temperatures in the flow path reached at least 400 degrees C (752 degrees F)—far higher than a firefighter in full protective gear can survive,” said Madrzykowski.

An abandoned apartment building on Governor’s Island, New York, provided a real-life laboratory for fire researchers studying wind-driven fires and tactics to combat them. The Statue of Liberty can be seen to the left of the island.

The researchers also conducted field experiments in an abandoned seven-story building on Governors Island, New York. The results confirmed the laboratory findings—that conditions created by wind can push hot gases and smoke from the apartment of origin into the public corridors and stairwells.

Researchers experimented with techniques that had a significant impact on reducing the hazardous conditions. For example, firefighters placed a fire-resistant material over windows to block the wind. They also used a “floor below nozzle” that allowed them to spray water through a broken window from the apartment below. The importance of controlling the doors inside a building to interrupt the flow path and stop the spread of fire gases was demonstrated many times during the experiments.

The laboratory tests that NIST and the Fire Protection Research Foundation conducted are described in NIST Technical Note 1618, “Fire Fighting Tactics Under Wind Driven Conditions: Laboratory Experiments”.

The field study, in which NIST teamed with the Fire Department of New York City and the Polytechnic Institute of New York University, is reported in NIST Technical Note 1629 “Fire Fighting Tactics Under Wind Drive Fire Conditions: 7-Story Building Experiments.” (http://fire.nist.gov/bfrlpubs/fire09/PDF/f09015.pdf).

Both projects were supported by the Department of Homeland Security’s Federal Emergency Management Agency Assistance to Firefighter Research and Development Grant Program and the United States Fire Administration.

A double DVD set on the research is available for teaching purposes. It includes a video overview, both reports, a PowerPoint presentation summarizing the results, training videos, and video documentation of all of the experiments. The information is available at www.fire.gov. The DVD set can be ordered by emailing a request to madrzy@nist.gov.

Evelyn Brown | Newswise Science News
Further information:
http://www.fire.gov
http://fire.nist.gov/bfrlpubs/fire09/PDF/f09015.pdf
http://www.nist.gov

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>