Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Rise Fire Study Provides Insight Into Deadly Wind-Driven Fires

11.05.2009
Fire researchers at NIST have just published two reports providing details of how wind affects fires in high-rise buildings.

Fire researchers at the National Institute of Standards and Technology (NIST) have just published two reports providing details of how wind affects fires in high-rise buildings. A set of instructional DVDs based on the research is available for firefighter training, and will lead to improved safety for civilian and firefighters.

While much is known about wind’s impact on outdoor blazes, little has been known about how a fire rapidly turns into a “blowtorch” —firefighter’s parlance—when a blast of wind enters through a broken window, particularly in high-rise buildings.

Thousands of high-rise apartment fires occur annually. Beginning in one room, a fire can quickly spread smoke, heat and gases through hallways and stairwells, limiting the occupants’ chances to escape and the firefighters’ ability to rescue them. NIST researchers conducted a series of experiments to study the effect of wind on high-rise fires—buildings seven stories and taller—and potential techniques for fighting these fires.

Eight experiments were conducted in NIST’s Large Fire Laboratory, where conditions were controlled and measured. “These tests demonstrated that wind and a simple room and contents’ fire can be extended when wind and an open vent are present,” explained Fire Protection Engineer Dan Madrzykowski. “The temperatures in the flow path reached at least 400 degrees C (752 degrees F)—far higher than a firefighter in full protective gear can survive,” said Madrzykowski.

An abandoned apartment building on Governor’s Island, New York, provided a real-life laboratory for fire researchers studying wind-driven fires and tactics to combat them. The Statue of Liberty can be seen to the left of the island.

The researchers also conducted field experiments in an abandoned seven-story building on Governors Island, New York. The results confirmed the laboratory findings—that conditions created by wind can push hot gases and smoke from the apartment of origin into the public corridors and stairwells.

Researchers experimented with techniques that had a significant impact on reducing the hazardous conditions. For example, firefighters placed a fire-resistant material over windows to block the wind. They also used a “floor below nozzle” that allowed them to spray water through a broken window from the apartment below. The importance of controlling the doors inside a building to interrupt the flow path and stop the spread of fire gases was demonstrated many times during the experiments.

The laboratory tests that NIST and the Fire Protection Research Foundation conducted are described in NIST Technical Note 1618, “Fire Fighting Tactics Under Wind Driven Conditions: Laboratory Experiments”.

The field study, in which NIST teamed with the Fire Department of New York City and the Polytechnic Institute of New York University, is reported in NIST Technical Note 1629 “Fire Fighting Tactics Under Wind Drive Fire Conditions: 7-Story Building Experiments.” (http://fire.nist.gov/bfrlpubs/fire09/PDF/f09015.pdf).

Both projects were supported by the Department of Homeland Security’s Federal Emergency Management Agency Assistance to Firefighter Research and Development Grant Program and the United States Fire Administration.

A double DVD set on the research is available for teaching purposes. It includes a video overview, both reports, a PowerPoint presentation summarizing the results, training videos, and video documentation of all of the experiments. The information is available at www.fire.gov. The DVD set can be ordered by emailing a request to madrzy@nist.gov.

Evelyn Brown | Newswise Science News
Further information:
http://www.fire.gov
http://fire.nist.gov/bfrlpubs/fire09/PDF/f09015.pdf
http://www.nist.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>