Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Rise Fire Study Provides Insight Into Deadly Wind-Driven Fires

11.05.2009
Fire researchers at NIST have just published two reports providing details of how wind affects fires in high-rise buildings.

Fire researchers at the National Institute of Standards and Technology (NIST) have just published two reports providing details of how wind affects fires in high-rise buildings. A set of instructional DVDs based on the research is available for firefighter training, and will lead to improved safety for civilian and firefighters.

While much is known about wind’s impact on outdoor blazes, little has been known about how a fire rapidly turns into a “blowtorch” —firefighter’s parlance—when a blast of wind enters through a broken window, particularly in high-rise buildings.

Thousands of high-rise apartment fires occur annually. Beginning in one room, a fire can quickly spread smoke, heat and gases through hallways and stairwells, limiting the occupants’ chances to escape and the firefighters’ ability to rescue them. NIST researchers conducted a series of experiments to study the effect of wind on high-rise fires—buildings seven stories and taller—and potential techniques for fighting these fires.

Eight experiments were conducted in NIST’s Large Fire Laboratory, where conditions were controlled and measured. “These tests demonstrated that wind and a simple room and contents’ fire can be extended when wind and an open vent are present,” explained Fire Protection Engineer Dan Madrzykowski. “The temperatures in the flow path reached at least 400 degrees C (752 degrees F)—far higher than a firefighter in full protective gear can survive,” said Madrzykowski.

An abandoned apartment building on Governor’s Island, New York, provided a real-life laboratory for fire researchers studying wind-driven fires and tactics to combat them. The Statue of Liberty can be seen to the left of the island.

The researchers also conducted field experiments in an abandoned seven-story building on Governors Island, New York. The results confirmed the laboratory findings—that conditions created by wind can push hot gases and smoke from the apartment of origin into the public corridors and stairwells.

Researchers experimented with techniques that had a significant impact on reducing the hazardous conditions. For example, firefighters placed a fire-resistant material over windows to block the wind. They also used a “floor below nozzle” that allowed them to spray water through a broken window from the apartment below. The importance of controlling the doors inside a building to interrupt the flow path and stop the spread of fire gases was demonstrated many times during the experiments.

The laboratory tests that NIST and the Fire Protection Research Foundation conducted are described in NIST Technical Note 1618, “Fire Fighting Tactics Under Wind Driven Conditions: Laboratory Experiments”.

The field study, in which NIST teamed with the Fire Department of New York City and the Polytechnic Institute of New York University, is reported in NIST Technical Note 1629 “Fire Fighting Tactics Under Wind Drive Fire Conditions: 7-Story Building Experiments.” (http://fire.nist.gov/bfrlpubs/fire09/PDF/f09015.pdf).

Both projects were supported by the Department of Homeland Security’s Federal Emergency Management Agency Assistance to Firefighter Research and Development Grant Program and the United States Fire Administration.

A double DVD set on the research is available for teaching purposes. It includes a video overview, both reports, a PowerPoint presentation summarizing the results, training videos, and video documentation of all of the experiments. The information is available at www.fire.gov. The DVD set can be ordered by emailing a request to madrzy@nist.gov.

Evelyn Brown | Newswise Science News
Further information:
http://www.fire.gov
http://fire.nist.gov/bfrlpubs/fire09/PDF/f09015.pdf
http://www.nist.gov

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>