Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Res Imaging Expands Vision Research of Live Birds of Prey

23.07.2010
Study Produces First-Time Images of Retinal Structure of Hawks and Owls

Bird observatories all over the world may benefit from a newly designed high-resolution imaging system used to study the retinal structure of live birds of prey. In a recently published Investigative Ophthalmology & Visual Science article, researchers reveal unprecedented three-dimensional information about the retina of four species of raptors — two hawks and two owls — using the non-invasive, powerful imaging tool.

Through a series of experiments conducted at Bascom Palmer Eye Institute at the University of Miami, the research team used the new spectral-domain optical coherence tomography (SD-OCT) system to test its potential for vision research in birds of prey. The resulting images show detailed retinal anatomy that is not widely known, such as the retina layers and the structure of the deep and shallow foveae, the tiny pit located in the light-sensitive retina that provides the clearest vision of all. Traumatic injury to one bird’s retina was also successfully imaged.

Although OCT has been used to image retinas in animals, the authors report that this the first time high resolution imaging has been used for living, awake birds, which provides an abundance of images with microscopic detail without harming the birds.

“Previous anatomical studies of raptor foveae required examination of the retina with a microscope, limiting the number of birds that could be studied,” said author Robert W. Knighton, PhD, retired research professor at Bascom Palmer Eye Institute.

Lead researchers Marco Ruggeri and Shuliang Jiao and their colleagues suggest that the results of this research point the way for other scientists to study the eye structure and vision of large birds, including those that compare retinal anatomy differences between birds of prey that hunt during the day and those that hunt at night.

“One can imagine that obtaining data with an SD-OCT scanner could become a routine procedure at the many bird observatories in the world,” adds Knighton, who now lives near Hawk Ridge Bird Observatory in Duluth, Minn.

The Association for Research in Vision and Ophthalmology (ARVO) is the largest eye and vision research organization in the world. Members include some 12,500 eye and vision researchers from over 80 countries. The Association encourages and assists research, training, publication and dissemination of knowledge in vision and ophthalmology. For more information, visit www.arvo.org.

The ARVO peer-reviewed journal Investigative Ophthalmology & Visual Science (IOVS) publishes results from original hypothesis-based clinical and laboratory research studies. IOVS ranks No. 4 in Impact Factor among ophthalmology journals. It is published monthly online.

Katrina Norfleet | Newswise Science News
Further information:
http://www.arvo.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>