Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Carbon Dioxide Levels Cause Abnormally Large Fish Ear Bones

29.06.2009
Scripps study focuses on bony structures essential in fish orientation and acceleration.

Rising carbon dioxide levels in the ocean have been shown to adversely affect shell-forming creatures and corals, and now a new study by researchers at Scripps Institution of Oceanography at UC San Diego has shown for the first time that CO2 can impact a fundamental bodily structure in fish.

A brief paper published in the June 26 issue of the journal Science describes experiments in which fish that were exposed to high levels of carbon dioxide experienced abnormally large growth in their otoliths, or ear bones. Otoliths serve a vital function in fish by helping them sense orientation and acceleration.

The researchers had hypothesized that otoliths in young white seabass growing in waters with elevated carbon dioxide would grow more slowly than a comparable group growing in seawater with normal CO2 levels. They were surprised to discover the reverse, finding “significantly larger” otoliths in fish developing in high-CO2 water.

The fish in high-CO2 water were not larger in overall size, only the otoliths grew demonstrably bigger.

“At this point one doesn’t know what the effects are in terms of anything damaging to the behavior or the survival of the fish with larger otoliths,” said David Checkley, a Scripps Oceanography professor and lead author of the new study. “The assumption is that anything that departs significantly from normality is an abnormality and abnormalities at least have the potential for having deleterious effects.”

With carbon dioxide levels rising due to human activities, particularly fossil fuel burning, resulting in both increased ocean CO2 and ocean acidification, the researchers intend to broaden their studies to examine specific areas, such as determining whether the otolith growth abnormality exists in fish other than white seabass; locating the physical mechanism that causes the enhanced otolith growth; and assessing whether the larger otoliths have a functional effect on the survival and the behavior of the fish.

“Number three is the big one,” said Checkley. “If fish can do just fine or better with larger otoliths then there’s no great concern. But fish have evolved to have their bodies the way they are. The assumption is that if you tweak them in a certain way it’s going to change the dynamics of how the otolith helps the fish stay upright, navigate and survive.”

In addition to serving in orientation and acceleration, otoliths help reveal physical characteristics of fish. Because otoliths grow in onion-like layers, scientists use otoliths to determine the age of fish, counting the increments similar to tree-ring dating.

Coauthors of the paper include Andrew Dickson, John Radich and Rebecca Asch of Scripps Oceanography; Motomitsu Takahashi of the Seikai National Fisheries Research Institute in Nagasaki, Japan; and Nadine Eisenkolb of the University of Southern California.

The research was supported by the Academic Senate of UC San Diego.

Scripps News: scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu
http://scripps.ucsd.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>