Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-carb intake in infancy has lifelong effects, UB study finds

20.03.2013
Results of animal study suggest that human babies may be less prone to obesity if given solid foods later

Consumption of foods high in carbohydrates immediately after birth programs individuals for lifelong increased weight gain and obesity, a University at Buffalo animal study has found, even if caloric intake is restricted in adulthood for a period of time.

The research on laboratory animals was published this month in the American Journal of Physiology: Endocrinology and Metabolism; it was published online in December.

“This is the first time that we have shown in our rat model of obesity that there is a resistance to the reversal of this programming effect in adult life,” explains Mulchand S. Patel, PhD, SUNY Distinguished Professor of Biochemistry and associate dean for research and biomedical education in the UB School of Medicine and Biomedical Sciences.

The research has applications to the obesity epidemic in the U.S., particularly as it relates to infant nutrition, Patel explains.

“Many American baby foods and juices are high in carbohydrates, mainly simple sugars,” he says. “Our hypothesis has been that the introduction of baby foods too early in life increases carbohydrate intake, thereby boosting insulin secretion and causing metabolic programming that in turn, predisposes the child to obesity later in life.”

For more than 20 years, Patel and his UB colleagues have studied how the increased intake of carbohydrate-enriched calories just after birth can program individuals to overeat.

For their rat model of obesity, the UB researchers administered to newborn rat pups special milk formulas they developed that are either similar to rat milk in composition, (higher in fat-derived calories) or enriched with carbohydrate-derived calories.

“These pups who were fed a high-carbohydrate milk formula are getting a different kind of nourishment than they normally would,” explains Patel, “which metabolically programs them to develop hyperinsulinemia, a precursor for obesity and type 2 diabetes.”

At three weeks of age, the rat pups fed the high-carbohydrate (HC) formula were then weaned onto rat chow either with free access to food or with a moderate calorie restriction, so that their level of consumption would be the same as pups reared naturally.

“When food intake for the HC rats was controlled to a normal level, the pups grew at a normal rate, similar to that of pups fed by their mothers,” Patel says. “But we wanted to know, did that period of moderate calorie restriction cause the animals to be truly reprogrammed? We knew that the proof would come once we allowed them to eat ad libitum, without any restrictions.

“We found that when the HC rat undergoes metabolic reprogramming for development of obesity in early postnatal life, and then is subjected to moderate caloric restriction, similar to when an individual goes on a diet, the programming is only suppressed, not erased,” he says.

This is due to developmental plasticity, which extends from fetal development into the immediate postnatal period. According to Patel, previous research by others has revealed that during the immediate postnatal period, pancreatic islets and neurons continue to mature.

“That’s why an altered nutritional experience during this critical period can independently modify the way certain organs in the body develop, resulting in programming effects that manifest later in life,” Patel says. “During this critical period, the hypothalamus, which regulates appetite, becomes programmed to drive the individual to eat more food. We found that a period of moderate caloric restriction later in life cannot reverse this programming effect.”

Therefore, addressing the obesity epidemic in the U.S. requires true lifestyle change, including permanent caloric restriction.

“As long as you restrict intake, you can maintain normal body weight,” he says.

To avoid metabolic reprogramming that predisposes a baby to obesity later in life, he says that parents should follow the American Academy of Pediatric guidelines, which state that solid foods should not be given before a baby is 4-6 months old.

Patel adds that this study involved only moderate caloric restriction; he and his colleagues would like to study whether or not more severe caloric restriction for a limited period can result in true metabolic reprogramming to normal metabolic phenotype.

Co-authors with Patel are Malathi Srinivasan, PhD, research assistant professor and Saleh Mahmood, PhD, post-doctoral associate, both in the UB Department of Biochemistry.

The work was supported by the National Institute for Diabetes and Digestive and Kidney Diseases.

Media Contact Information
Ellen Goldbaum
Senior Editor, Medicine, Public Health
Tel: 716-645-4605
goldbaum@buffalo.edu
Twitter: @egoldbaum

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>