Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-carb intake in infancy has lifelong effects, UB study finds

20.03.2013
Results of animal study suggest that human babies may be less prone to obesity if given solid foods later

Consumption of foods high in carbohydrates immediately after birth programs individuals for lifelong increased weight gain and obesity, a University at Buffalo animal study has found, even if caloric intake is restricted in adulthood for a period of time.

The research on laboratory animals was published this month in the American Journal of Physiology: Endocrinology and Metabolism; it was published online in December.

“This is the first time that we have shown in our rat model of obesity that there is a resistance to the reversal of this programming effect in adult life,” explains Mulchand S. Patel, PhD, SUNY Distinguished Professor of Biochemistry and associate dean for research and biomedical education in the UB School of Medicine and Biomedical Sciences.

The research has applications to the obesity epidemic in the U.S., particularly as it relates to infant nutrition, Patel explains.

“Many American baby foods and juices are high in carbohydrates, mainly simple sugars,” he says. “Our hypothesis has been that the introduction of baby foods too early in life increases carbohydrate intake, thereby boosting insulin secretion and causing metabolic programming that in turn, predisposes the child to obesity later in life.”

For more than 20 years, Patel and his UB colleagues have studied how the increased intake of carbohydrate-enriched calories just after birth can program individuals to overeat.

For their rat model of obesity, the UB researchers administered to newborn rat pups special milk formulas they developed that are either similar to rat milk in composition, (higher in fat-derived calories) or enriched with carbohydrate-derived calories.

“These pups who were fed a high-carbohydrate milk formula are getting a different kind of nourishment than they normally would,” explains Patel, “which metabolically programs them to develop hyperinsulinemia, a precursor for obesity and type 2 diabetes.”

At three weeks of age, the rat pups fed the high-carbohydrate (HC) formula were then weaned onto rat chow either with free access to food or with a moderate calorie restriction, so that their level of consumption would be the same as pups reared naturally.

“When food intake for the HC rats was controlled to a normal level, the pups grew at a normal rate, similar to that of pups fed by their mothers,” Patel says. “But we wanted to know, did that period of moderate calorie restriction cause the animals to be truly reprogrammed? We knew that the proof would come once we allowed them to eat ad libitum, without any restrictions.

“We found that when the HC rat undergoes metabolic reprogramming for development of obesity in early postnatal life, and then is subjected to moderate caloric restriction, similar to when an individual goes on a diet, the programming is only suppressed, not erased,” he says.

This is due to developmental plasticity, which extends from fetal development into the immediate postnatal period. According to Patel, previous research by others has revealed that during the immediate postnatal period, pancreatic islets and neurons continue to mature.

“That’s why an altered nutritional experience during this critical period can independently modify the way certain organs in the body develop, resulting in programming effects that manifest later in life,” Patel says. “During this critical period, the hypothalamus, which regulates appetite, becomes programmed to drive the individual to eat more food. We found that a period of moderate caloric restriction later in life cannot reverse this programming effect.”

Therefore, addressing the obesity epidemic in the U.S. requires true lifestyle change, including permanent caloric restriction.

“As long as you restrict intake, you can maintain normal body weight,” he says.

To avoid metabolic reprogramming that predisposes a baby to obesity later in life, he says that parents should follow the American Academy of Pediatric guidelines, which state that solid foods should not be given before a baby is 4-6 months old.

Patel adds that this study involved only moderate caloric restriction; he and his colleagues would like to study whether or not more severe caloric restriction for a limited period can result in true metabolic reprogramming to normal metabolic phenotype.

Co-authors with Patel are Malathi Srinivasan, PhD, research assistant professor and Saleh Mahmood, PhD, post-doctoral associate, both in the UB Department of Biochemistry.

The work was supported by the National Institute for Diabetes and Digestive and Kidney Diseases.

Media Contact Information
Ellen Goldbaum
Senior Editor, Medicine, Public Health
Tel: 716-645-4605
goldbaum@buffalo.edu
Twitter: @egoldbaum

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>