Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How high can a climber go?

08.01.2010
The maximum time an athlete is able to continue climbing to exhaustion may be the only determinant of his/her performance. A new European study, led by researchers from the University of Granada, the objective of which is to help trainers and climbers design training programmes for this type of sport, shows this to be the case.

Until now, performance indicators for climbing have been low body fat percentage and grip strength. Furthermore, existing research was based on the comparison of amateur and expert climbers. Now, a new study carried out with 16 high-level climbers breaks with this approach and reveals that the time it takes for an athlete to become exhausted is the only indicator of his/her performance.

Vanesa España Romero, the main author of the work and researcher at the University of Granada explains to SINC how "these findings could help trainers or athletes in the design of sport climbing training programmes so that Spain can continue to lead the way in this sporting activity throughout the world".

The study, published in the European Journal of Applied Physiology, analyses the physiological parameters that determine performance in this sport at its highest level. The participants, eight women with an average rating of 7a (the scale of difficulty of a climbing route is graded from 5 to 9, with sub-grades of a, b and c) and eight men with an average rating of 8a, were divided into an "expert group" and an "elite group".

The researchers assessed the climbers with body composition tests (weight, height, body mass index, body fat %, bone mineral density, and bone mineral content), kinanthropometry (length of arms, hands and fingers, bone mineral density and bone mineral content of the forearm), and physical fitness tests (flexibility, strength of the upper and lower body and aerobic capacity measured at a climbing centre).

The results show there to be no significant differences between expert and elite climbers in any of the tests performed, except in climbing time to exhaustion and in bone mineral density, both of which were higher in the elite group. "Therefore, the maximum climbing time to exhaustion of an athlete is the sole determinant of performance", the researcher confirms.

A demanding and vertical practice

Sport climbing began as a form of traditional climbing in the mid 80s, and is now a sport in its own right. The International Federation of Sport Climbing is currently requesting its inclusion as an Olympic sport.

The increase in the number of climbers and the proliferation of climbing centres and competitions have contributed to its interest in recent years, although there is limited scientific literature on climbing effort.

The most important research relates to energy consumption (ergospirometry, heart rate and lactic acid blood concentrations), the designation of maximum strength and local muscular resistance of climbers (dynamometry and electromyography), and to establishing anthropometric characteristics.

According to experts, a fundamental characteristic of sport climbing is its "vertical dimension", making it unique given its postural organisation in space, and from a physiological point of view, the effect a gravitational load has on movements.

In short, to complete a climb successfully, athletes should maintain their effort for as long as possible to improve their chances of reaching the ultimate goal.

References:
Vanesa España-Romero, Francisco B. Ortega Porcel, Enrique G. Artero,
David Jiménez-Pavón, Ángel Gutiérrez Sainz, Manuel J. Castillo Garzón y Jonatan R. Ruiz. "Climbing time to exhaustion is a determinant of climbing performance in high-level sport climbers". European Journal of Applied Physiology (2009) 107:517-525, noviembre de 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>