Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hepatitis C virus channels efforts into cell survival

19.08.2009
Researchers at the University of Leeds have discovered a previously unknown mechanism that allows the hepatitis C virus (HCV) to remain in the body for decades.

A study published in the Proceedings of the National Academy of Sciences (PNAS) shows that the virus blocks the actions of a specific ion channel in the cell membrane that would usually trigger apoptosis - the cell's self-destruct programme - and in doing so, has evolved another way of protecting itself from being eliminated from the body.

Apoptosis occurs naturally in the body to allow the removal of unhealthy cells or the replacement of worn-out cells. One of the ways in which apoptosis can be triggered in a cell is to reduce its potassium levels. This can happen when the cell is exposed to oxidative stress that activates a specific ion channel (which acts as a pore in the cell membrane) causing it to open and allow out potassium ions.

However, the research team has discovered that a protein made by HCV, known as NS5A, is able to block the activation of this ion channel in liver cells, enabling these cells to resist cell death for longer.

"For a virus to persist in the body over a long time, it has to find a way of manipulating the host cell so that it becomes resistant to apoptosis," says lead researcher Professor Mark Harris of the University's Faculty of Biological Sciences. "We know of many ways that viruses have evolved to do this, but this is the first observation of a virus preventing cell death by manipulating an ion channel."

HCV affects some 170 million people globally and only around half of these will respond to treatment. Many sufferers will be asymptomatic – some for twenty or even thirty years – but the virus remains in the liver, and its long-tem damage can ultimately cause cirrhosis or cancer.

"Cells in the liver are often exposed to high levels of oxidative, and other, stresses as they work to detoxify the blood of foreign compounds such as drugs and alcohol, and to remove chemicals produced by our own bodies," says Professor Harris. "In addition, the virus itself causes oxidative stress as it replicates in the cells. The research shows that the virus has evolved another way of protecting itself from this natural process, and to avoid elimination from the body for longer."

The research team believes that continued research may offer a potential target for drug development, perhaps through combination therapy.

"We need to find out exactly how the blocking action works, but it's possible that two drugs could be coupled together, one to prevent the virus from blocking the ion channel and another to induce stress to force apoptosis," says Professor Harris.

"It's a very exciting discovery, and ideally we'd like to expand our investigations to see whether other viruses that cause long term or chronic infections – such as HIV – have evolved the same ability."

The research was funded by the Medical Research Council.

Clare Elsley | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>