Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Ford study links 23 microRNAs to laryngeal cancer

14.09.2011
A Henry Ford Hospital study has identified 23 microRNAs for laryngeal cancer, a discovery that could yield new insight into what causes certain cells to grow and become cancerous tumors in the voice box.

The role of microRNA (miRNA), the small, non-coding RNA molecules that regulate human genes, has recently come into greater focus as researchers continue to understand the cellular mechanics of cancer development, says Kang Mei Chen, M.D., the study's lead author.

"While they may be small, miRNAs are no longer being viewed as just molecular noise," says Dr. Chen, a research investigator in the Department of Otolaryngology – Head & Neck Surgery at Henry Ford Hospital.

"We now recognize miRNAs as bigger players with increasing prominence in theories about cancer."

Findings from the Henry Ford study – supported by a NIH grant – will be presented Tuesday, Sept. 13 in San Francisco at the American Academy of Otolaryngology–Head & Neck Surgery Foundation Annual Meeting.

MiRNA may help cancer researchers unravel the complexities of what happens at the genomic level of cell evolution. It's estimated that there are at least 800 human miRNAs.

Since miRNAs are differentially expressed in various types of cancers compared with noncancerous tissues, researchers believe that they may play a crucial role in the production or formation of tumors.

"By gaining insight into laryngeal cancer, it gives us another level to understand what goes wrong and when cells decide to embark on a tumor genesis journey. From there, it's possible for researchers to look at how to control cancer growth and improve treatment," says co-author Maria J. Worsham, Ph.D., director of research in the Department of Otolaryngology-Head & Neck Surgery at Henry Ford.

The goal of the Henry Ford study was to discover miRNAs specific to laryngeal squamous cell carcinoma – a form of head and neck cancer that starts in the voice box.

Led by Dr. Chen, the researchers performed global miRNA profiling on stored laryngeal squamous cell carcinoma samples, as well as non-cancerous tissue samples from the larynx.

The team then used quantitative real-time polymerase chain reaction – a fast and inexpensive technique used to copy small segments of DNA – to verify miRNAs in the laryngeal cancer samples.

Of the 800 human miRNAs, 23 were found to be different between the cancerous and normal laryngeal tissue samples.

Among the 23 miRNAs tied to laryngeal cancer through the Henry Ford study, 15 had yet to be reported in head and neck cancer.

With the field narrowed to 23 miRNAs in laryngeal cancer, it presents researchers with the opportunity to quantify each piece of RNA and further study miRNAs in head and neck cancer, notes Dr. Chen.

The NIH-funded head and neck squamous carcinoma cohort for Detroit, with over 1,000 primary patients, includes more than 200 laryngeal sites, giving Henry Ford researchers the opportunity to look at miRNA expression in a larger group of laryngeal cancers as well as in other head and neck cancer sites.

Along with Drs. Chen and Worsham, study co-authors from Henry Ford are Josena K. Stephen, M.D.; Shaleta Havard; Veena Shah, M.D.; Glendon Gardner, M.D.; and Vanessa G. Schweitzer, M.D.

Research Support: NIH grant R01DE15990.

Krista Hopson | EurekAlert!
Further information:
http://www.hfhs.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>