Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Henry Ford study links 23 microRNAs to laryngeal cancer

14.09.2011
A Henry Ford Hospital study has identified 23 microRNAs for laryngeal cancer, a discovery that could yield new insight into what causes certain cells to grow and become cancerous tumors in the voice box.

The role of microRNA (miRNA), the small, non-coding RNA molecules that regulate human genes, has recently come into greater focus as researchers continue to understand the cellular mechanics of cancer development, says Kang Mei Chen, M.D., the study's lead author.

"While they may be small, miRNAs are no longer being viewed as just molecular noise," says Dr. Chen, a research investigator in the Department of Otolaryngology – Head & Neck Surgery at Henry Ford Hospital.

"We now recognize miRNAs as bigger players with increasing prominence in theories about cancer."

Findings from the Henry Ford study – supported by a NIH grant – will be presented Tuesday, Sept. 13 in San Francisco at the American Academy of Otolaryngology–Head & Neck Surgery Foundation Annual Meeting.

MiRNA may help cancer researchers unravel the complexities of what happens at the genomic level of cell evolution. It's estimated that there are at least 800 human miRNAs.

Since miRNAs are differentially expressed in various types of cancers compared with noncancerous tissues, researchers believe that they may play a crucial role in the production or formation of tumors.

"By gaining insight into laryngeal cancer, it gives us another level to understand what goes wrong and when cells decide to embark on a tumor genesis journey. From there, it's possible for researchers to look at how to control cancer growth and improve treatment," says co-author Maria J. Worsham, Ph.D., director of research in the Department of Otolaryngology-Head & Neck Surgery at Henry Ford.

The goal of the Henry Ford study was to discover miRNAs specific to laryngeal squamous cell carcinoma – a form of head and neck cancer that starts in the voice box.

Led by Dr. Chen, the researchers performed global miRNA profiling on stored laryngeal squamous cell carcinoma samples, as well as non-cancerous tissue samples from the larynx.

The team then used quantitative real-time polymerase chain reaction – a fast and inexpensive technique used to copy small segments of DNA – to verify miRNAs in the laryngeal cancer samples.

Of the 800 human miRNAs, 23 were found to be different between the cancerous and normal laryngeal tissue samples.

Among the 23 miRNAs tied to laryngeal cancer through the Henry Ford study, 15 had yet to be reported in head and neck cancer.

With the field narrowed to 23 miRNAs in laryngeal cancer, it presents researchers with the opportunity to quantify each piece of RNA and further study miRNAs in head and neck cancer, notes Dr. Chen.

The NIH-funded head and neck squamous carcinoma cohort for Detroit, with over 1,000 primary patients, includes more than 200 laryngeal sites, giving Henry Ford researchers the opportunity to look at miRNA expression in a larger group of laryngeal cancers as well as in other head and neck cancer sites.

Along with Drs. Chen and Worsham, study co-authors from Henry Ford are Josena K. Stephen, M.D.; Shaleta Havard; Veena Shah, M.D.; Glendon Gardner, M.D.; and Vanessa G. Schweitzer, M.D.

Research Support: NIH grant R01DE15990.

Krista Hopson | EurekAlert!
Further information:
http://www.hfhs.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>