Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University researchers show how motherhood behavior Is influenced by alterations in brain function

25.10.2011
Instinctive mothering behavior towards care of newborns has long been recognized as a phenomenon in humans and animals, but now research at the Hebrew University of Jerusalem has shown that motherhood is associated with the acquisition of a host of new behaviors that are driven, at least in part, by alterations in brain function.

The research, by Dr. Adi Mizrahi of the Silberman Institute of Life Sciences and Edmond and Lily Safra Center for Brain Sciences at the Hebrew University, has just been published in the journal Neuron. It provides insight into how neural changes integrating odors and sounds lie behind a mouse mother’s ability to recognize and respond to distress calls from her pups.

“We know that distinct brain changes are linked with motherhood, but the impact of these changes on sensory processing and the emergence of maternal behaviors are largely unknown,” explains Mizrahi. “In mice, olfactory and auditory cues play a major role in the communication between a mother and her pups. Therefore, we hypothesized that there may be some interaction between olfactory and auditory processing so that pup odors might modulate the way pup calls are processed in the mother’s brain.”

Dr. Mizrahi and his post-doctoral colleague Dr. Lior Cohen examined whether the primary auditory cortex, a brain region that is involved in the recognition of sounds, might serve as an early processing region for integration of pup odors and pup calls. The primary auditory cortex is known as a site that undergoes functional changes in response to sensory input from the environment.

In their study, the researchers exposed regular mice, mice that had experienced interaction with their pups, and lactating mother mice to pup odors, and then monitored both spontaneous and sound-evoked activity of neurons in the auditory cortex. The odors triggered dramatic changes in auditory processing only in the females that had interacted with pups, while the lactating mothers were the most sensitive to pup sounds. The olfactory-auditory integration appeared in lactating mothers shortly after they had given birth and had a particularly strong effect on the detection of pup distress calls.

Taken together, the findings suggest that motherhood is associated with a previously un-described form of multisensory processing in the auditory cortex.

“We have shown that motherhood is associated with a rapid and robust appearance of olfactory-auditory integration in the primary auditory cortex occurring along with stimulus-specific adaptation to pup distress calls,” says Dr. Mizrahi. “These processes help to explain how changes in neocortical networks facilitate efficient detection of pups by their caring mothers.”

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>