Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hebrew University-German study seeks better understanding

Aim is to promote better drug design in future

A mechanism that permits essential substances to enter our cells while at the same time removing from them harmful components also has a “down side.” This negative aspect prevents vital drugs, such as anti-cancer drugs, from achieving their designed functions, and also enables bacterial cells to develop resistance to penetration of antibiotics.

A study aimed at a fuller understanding of how this selective mechanism works -- with a view towards better controlling it through new drug designs -- is the subject of an article by Hebrew University of Jerusalem and German researchers that has been published in Proceedings of the National Academy of Sciences in the US (PNAS).

The trafficking of materials in and out of cells is controlled by a variety of proteins found in the membrane surrounding living cells, called “transporters.” It is these transporters that fulfill the important function of allowing entrance of vital compounds on the one hand and disposal of toxic compounds on the other hand.

While providing an essential survival strategy for the organism, the transporters that remove toxic compounds from the cell have been associated with the ability of the bacterial cell to develop resistance to antibiotics. In mammalian cells, transporters are responsible for some types of resistance of cancer cells to antineoplastic drugs (drugs against abnormal/cancerous growths).

Since this resistance poses serious problems in the treatment of cancers and infectious diseases, these proteins are an important target for drug design.

To progress in this pursuit, a more complete knowledge of the transporter mechanism is required, but despite many studies, this mechanism is not yet fully understood. It is, however, well established that an essential part of the mechanism stems from the ability of the transporter to change conformations. Thus, the binding site of a particular transporter is alternatively exposed either to the cell cytoplasm (interior) or to the outside environment, enabling the protein to bind its materials on one side of the cell and transport them to the other side.

The research conducted by the Hebrew University-German team focused at a model transporter expressed in the brain: VMAT (Vesicular MonoAmine Transporter). VMAT is known to transport a variety of neurotransmitters like adrenaline, dopamine and serotonin. In addition, it can also transport MPP, a neurotoxin involved in models of Parkinson’s disease.

A functional and structural link between VMAT and bacterial transporters responsible for multidrug resistance may suggest a common origin for both types of proteins. A number of studies demonstrated the significance of VMAT as a target for drug therapy in a variety of pathologic states, such as high blood pressure, hyperkinetic movement disorders and Tourette syndrome.

The research was conducted by Shimon Schuldiner, the Mathilda Marks-Kennedy Professor of Biochemistry at the Hebrew University, and his research students Dana Yaffe and Yonatan Shuster, in cooperation with a group led by Dr Lucy Forrest at the Max Planck institute in Frankfurt, Germany, and her post-doctoral associate Sebastian Radestock.

A computational method was used, allowing the development of a novel model, simulating the protein’s 3D structure. The model led to a series of biochemical experiments, which in turn provided a better understanding of the transporter’s conformational changes. Specifically, the research identified interactions within the protein that mediate the conformational changes.

The researchers hope that this knowledge may, in the future, help in designing drugs for treating pathologies involving transporters similar to VMAT, including infectious and neurological diseases.


Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)

Jerry Barach | Hebrew University
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>