Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University-German study seeks better understanding

02.05.2013
Aim is to promote better drug design in future

A mechanism that permits essential substances to enter our cells while at the same time removing from them harmful components also has a “down side.” This negative aspect prevents vital drugs, such as anti-cancer drugs, from achieving their designed functions, and also enables bacterial cells to develop resistance to penetration of antibiotics.

A study aimed at a fuller understanding of how this selective mechanism works -- with a view towards better controlling it through new drug designs -- is the subject of an article by Hebrew University of Jerusalem and German researchers that has been published in Proceedings of the National Academy of Sciences in the US (PNAS).

The trafficking of materials in and out of cells is controlled by a variety of proteins found in the membrane surrounding living cells, called “transporters.” It is these transporters that fulfill the important function of allowing entrance of vital compounds on the one hand and disposal of toxic compounds on the other hand.

While providing an essential survival strategy for the organism, the transporters that remove toxic compounds from the cell have been associated with the ability of the bacterial cell to develop resistance to antibiotics. In mammalian cells, transporters are responsible for some types of resistance of cancer cells to antineoplastic drugs (drugs against abnormal/cancerous growths).

Since this resistance poses serious problems in the treatment of cancers and infectious diseases, these proteins are an important target for drug design.

To progress in this pursuit, a more complete knowledge of the transporter mechanism is required, but despite many studies, this mechanism is not yet fully understood. It is, however, well established that an essential part of the mechanism stems from the ability of the transporter to change conformations. Thus, the binding site of a particular transporter is alternatively exposed either to the cell cytoplasm (interior) or to the outside environment, enabling the protein to bind its materials on one side of the cell and transport them to the other side.

The research conducted by the Hebrew University-German team focused at a model transporter expressed in the brain: VMAT (Vesicular MonoAmine Transporter). VMAT is known to transport a variety of neurotransmitters like adrenaline, dopamine and serotonin. In addition, it can also transport MPP, a neurotoxin involved in models of Parkinson’s disease.

A functional and structural link between VMAT and bacterial transporters responsible for multidrug resistance may suggest a common origin for both types of proteins. A number of studies demonstrated the significance of VMAT as a target for drug therapy in a variety of pathologic states, such as high blood pressure, hyperkinetic movement disorders and Tourette syndrome.

The research was conducted by Shimon Schuldiner, the Mathilda Marks-Kennedy Professor of Biochemistry at the Hebrew University, and his research students Dana Yaffe and Yonatan Shuster, in cooperation with a group led by Dr Lucy Forrest at the Max Planck institute in Frankfurt, Germany, and her post-doctoral associate Sebastian Radestock.

A computational method was used, allowing the development of a novel model, simulating the protein’s 3D structure. The model led to a series of biochemical experiments, which in turn provided a better understanding of the transporter’s conformational changes. Specifically, the research identified interactions within the protein that mediate the conformational changes.

The researchers hope that this knowledge may, in the future, help in designing drugs for treating pathologies involving transporters similar to VMAT, including infectious and neurological diseases.

CONTACT:

Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
jerryb@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>