Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat acclimation benefits athletic performance

26.10.2010
Health-related and performance benefits found among cyclists pre-training in Oregon's climate chamber

Turning up the heat might be the best thing for athletes competing in cool weather, according to a new study by human physiology researchers at the University of Oregon.

Published in the October issue of the Journal of Applied Physiology, the paper examined the impact of heat acclimation to improve athletic performance in hot and cool environments.

Researchers conducted exercise tests on 12 highly trained cyclists -- 10 males and two females -- before and after a 10-day heat acclimation program. Participants underwent physiological and performance tests under both hot and cool conditions. A separate control group of eight highly trained cyclists underwent testing and followed the same exercise regime in a cool environment.

The data concluded that heat acclimation exposure provided considerable ergogenic benefits in cool conditions, in addition to the expected performance benefits in the hot environment. The study is the first to evaluate impacts of heat acclimation on aerobic performance in cool conditions.

"Our findings could have significant impacts in the competitive sports world," said Santiago Lorenzo, a researcher who performed the work as part of his dissertation at the University of Oregon. He is now completing post-doctoral training in the Institute for Exercise and Environmental Medicine (University of Texas Southwestern Medical Center) at Texas Health Presbyterian Hospital Dallas.

The study found performance increases of approximately 7 percent after 10 heat acclimation exposures. "In terms of competitive cycling, 7 percent is a really big increase and could mean that cyclists could use this approach to improve their performance in cooler weather conditions," said Lorenzo. However, the heat exposures must be in addition to the athletes' normal training regimen.

Heat acclimation improves the body's ability to control body temperature, improves sweating and increases blood flow through the skin, and expands blood volume allowing the heart to pump to more blood to muscles, organs and the skin as needed.

Another approach using the environment to improve exercise performance is a "live high/train low" regimen, which means residing at a high altitude and training at a low altitude. Many athletes worldwide now use this approach. According to Lorenzo, "heat acclimation is more practical, easier to apply and may yield more robust physiological adaptations."

The study was conducted in the Evonuk Environmental Physiology Core lab at the UO department of human physiology. The climatic chamber was set at 38 degrees Celsius (100 degrees Fahrenheit) for heat testing and 13 degrees Celsius (55 degrees Fahrenheit) for cool conditions with consistent humidity (30 percent relative humidity) for the cyclists' exercise tests.

According to Christopher Minson, co-director of the Evonuk lab, head of the UO human physiology department and study co-author, researchers also concluded that the heat may produce changes in the exercising muscle, including enzymatic changes that could improve the amount of work done by the muscle, but he says future research will have to examine it further.

"A next step is to determine whether heat acclimation improves performance in a competitive or real-world setting," said Minson.

He also notes possible implications for people with cardiac or other limitations such as paralysis that don't allow for the full cardiovascular benefits of exercise. If heat can be added, "it's conceivable that they would gain further cardiovascular benefits than exercise alone in a cool environment. These are exciting questions that deserve further study," said Minson.

Additional co-authors include John Halliwill, UO human physiology, and Michael Sawka of Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine. The research was funded by a grant from the Eugene and Clarissa Evonuk Memorial Fellowship and an ongoing grant to Minson from the National Institutes of Health.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 63 leading public and private research institutions in the United States and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Sources: Santiago Lorenzo, 214-345-6504, santitracker@hotmail.com; Christopher Minson, 541-346-4105, minson@uoregon.edu

Links:
Minson faculty page: http://pages.uoregon.edu/hphy/people/faculty_bio_minson.php
Department of Human Physiology: http://pages.uoregon.edu/hphy/entry/welcome.php
Evonuk Environmental Physiology Core: http://eeplabs.uoregon.edu/
ON FACEBOOK: http://www.facebook.com/UniversityOfOregonScience

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>