Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat acclimation benefits athletic performance

26.10.2010
Health-related and performance benefits found among cyclists pre-training in Oregon's climate chamber

Turning up the heat might be the best thing for athletes competing in cool weather, according to a new study by human physiology researchers at the University of Oregon.

Published in the October issue of the Journal of Applied Physiology, the paper examined the impact of heat acclimation to improve athletic performance in hot and cool environments.

Researchers conducted exercise tests on 12 highly trained cyclists -- 10 males and two females -- before and after a 10-day heat acclimation program. Participants underwent physiological and performance tests under both hot and cool conditions. A separate control group of eight highly trained cyclists underwent testing and followed the same exercise regime in a cool environment.

The data concluded that heat acclimation exposure provided considerable ergogenic benefits in cool conditions, in addition to the expected performance benefits in the hot environment. The study is the first to evaluate impacts of heat acclimation on aerobic performance in cool conditions.

"Our findings could have significant impacts in the competitive sports world," said Santiago Lorenzo, a researcher who performed the work as part of his dissertation at the University of Oregon. He is now completing post-doctoral training in the Institute for Exercise and Environmental Medicine (University of Texas Southwestern Medical Center) at Texas Health Presbyterian Hospital Dallas.

The study found performance increases of approximately 7 percent after 10 heat acclimation exposures. "In terms of competitive cycling, 7 percent is a really big increase and could mean that cyclists could use this approach to improve their performance in cooler weather conditions," said Lorenzo. However, the heat exposures must be in addition to the athletes' normal training regimen.

Heat acclimation improves the body's ability to control body temperature, improves sweating and increases blood flow through the skin, and expands blood volume allowing the heart to pump to more blood to muscles, organs and the skin as needed.

Another approach using the environment to improve exercise performance is a "live high/train low" regimen, which means residing at a high altitude and training at a low altitude. Many athletes worldwide now use this approach. According to Lorenzo, "heat acclimation is more practical, easier to apply and may yield more robust physiological adaptations."

The study was conducted in the Evonuk Environmental Physiology Core lab at the UO department of human physiology. The climatic chamber was set at 38 degrees Celsius (100 degrees Fahrenheit) for heat testing and 13 degrees Celsius (55 degrees Fahrenheit) for cool conditions with consistent humidity (30 percent relative humidity) for the cyclists' exercise tests.

According to Christopher Minson, co-director of the Evonuk lab, head of the UO human physiology department and study co-author, researchers also concluded that the heat may produce changes in the exercising muscle, including enzymatic changes that could improve the amount of work done by the muscle, but he says future research will have to examine it further.

"A next step is to determine whether heat acclimation improves performance in a competitive or real-world setting," said Minson.

He also notes possible implications for people with cardiac or other limitations such as paralysis that don't allow for the full cardiovascular benefits of exercise. If heat can be added, "it's conceivable that they would gain further cardiovascular benefits than exercise alone in a cool environment. These are exciting questions that deserve further study," said Minson.

Additional co-authors include John Halliwill, UO human physiology, and Michael Sawka of Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine. The research was funded by a grant from the Eugene and Clarissa Evonuk Memorial Fellowship and an ongoing grant to Minson from the National Institutes of Health.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 63 leading public and private research institutions in the United States and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Sources: Santiago Lorenzo, 214-345-6504, santitracker@hotmail.com; Christopher Minson, 541-346-4105, minson@uoregon.edu

Links:
Minson faculty page: http://pages.uoregon.edu/hphy/people/faculty_bio_minson.php
Department of Human Physiology: http://pages.uoregon.edu/hphy/entry/welcome.php
Evonuk Environmental Physiology Core: http://eeplabs.uoregon.edu/
ON FACEBOOK: http://www.facebook.com/UniversityOfOregonScience

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>