Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart failure linked to gene variant affecting vitamin D activation

03.12.2009
Study suggests future way to identify vulnerable people

Previous studies have shown a link between low vitamin D status and heart disease. Now a new study shows that patients with high blood pressure who possess a gene variant that affects an enzyme critical to normal vitamin D activation are twice as likely as those without the variant to have congestive heart failure.

"This study is the first indication of a genetic link between vitamin D action and heart disease," says Robert U. Simpson, professor of pharmacology at the University of Michigan Medical School and one of the authors of the study in the journal Pharmacogenomics.

"This study revealed that a critical enzyme absolutely required for production of the vitamin D hormone has a genetic variant associated with the development of congestive heart failure," Simpson says. "If subsequent studies confirm this finding and demonstrate a mechanism, this means that in the future, we may be able to screen earlier for those most vulnerable and slow the progress of the disease." Such a screening test would be years away.

Study co-authors Russel A. Wilke of the Medical College of Wisconsin and Catherine A. McCarthy of the Marshfield Clinic Research Foundation in Marshfield, Wis., analyzed the genetic profiles of 617 subjects from the Marshfield Clinic Personalized Medicine Project, a large DNA biobank. They looked for variants in five candidate genes chosen for their roles in vitamin D regulation and hypertension. One-third of the subjects had both hypertension and congestive heart failure, one-third had hypertension alone and one-third were included as healthy controls.

The results showed that a variant in the CYP27B1 gene was associated with congestive heart failure in patients with hypertension. It is already known that mutations that inactivate this gene reduce the required conversion of vitamin D into an active hormone.

"This initial study needs to be confirmed with a larger study that would permit analysis of the full cardiovascular profile of the population possessing the gene variant," Simpson says. A future study also would need to include people of more diverse origins than this study's population of mostly European ancestry, the authors say.

Citation: Pharmacogenomics, (2009) 10(11):1789-97

Additional authors: Bikol N. Mukesh, Satya V. Bhupathi, Richard A. Dart and Nader R. Ghebranious, Center for Human Genetics, Marshfield Clinic Research Foundation

Funding: National Institutes of Health, Marshfield Clinic Personalized Medicine Research Project, Abbott Laboratories, Michigan Institute for Clinical and Health Research

Patents/conflict disclosures: The research was funded in part by donors to cardiology research at Marshfield Clinic. Robert Simpson has a financial interest in and is president of Cardiavent, Inc., a company that is developing an analog (CARDO24) of vitamin D to treat cardiovascular diseases.

Resources:

http://www2.med.umich.edu/prmc/media/newsroom/details.cfm?ID=334
http://sitemaker.umich.edu/simpson/home
http://health.med.umich.edu/healthcontent.cfm?id=344

Anne Rueter | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>