Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heart Disease Linked to Evolutionary Changes That May Have Protected Early Mammals from Trauma

Can a bird have a heart attack?

A new study by researchers at the Perelman School of Medicine at the University of Pennsylvania suggests that cardiovascular disease may be an unfortunate consequence of mammalian evolution. The study, published in a recent issue of the journal Blood, demonstrates that the same features of blood platelets that may have provided an evolutionary advantage to early mammals now predispose humans to cardiovascular disease.

“The biology of platelets has been studied in great detail in the context of human disease, but almost nothing is known about why mammals have platelets, whereas no other species do,” said lead study author Alec A. Schmaier, PhD, an MD/PhD student in the lab of Mark Kahn, MD, professor of Medicine at Penn. “This new line of research suggests that platelets could have allowed mammals to better survive traumatic injury by being able to form cellular clots in arterial blood vessels. The price for this evolutionary change may be modern cardiovascular diseases.”

Platelets are small circulating cells that have no nucleus and form clots at sites of vessel injury. Platelets are required to prevent excessive bleeding following traumatic injury, but they also form clots at sites of atherosclerotic plaques in the blood vessels that lead to stroke and heart attack. Drugs that inhibit the function of platelets, including aspirin and clopidogrel, are the main weapons for treating heart attack and stroke.

Despite being a vital element of the blood clotting system, platelets are only found in mammals, whereas all non-mammalian vertebrates, including birds, have thrombocytes. About twice the diameter of platelets, thrombocytes contain a nucleus. Studies performed in the 1970s suggested they have a clotting function similar to platelets, but extensive studies of thrombocytes using modern experimental techniques have not been performed.

The research team focused their study on birds (compared to fish or reptiles for example) because birds and mammals both have a high pressure arterial system. Birds in fact have higher cardiac output and blood pressures than mammals do. Therefore, the challenge for hemostasis, i.e. blood clotting after vessel injury or trauma, should be similar between a mammal and a bird. However, in the present study, using molecular and physiologic techniques, the Penn researchers discovered that avian thrombocytes express most of the same proteins as platelets, with two key exceptions: thrombocytes express a significantly lower level of one essential platelet protein (the fibrinogen receptor) and are completely deficient in another (the adenosine diphosphate receptor) that function in a pathway required to form occlusive clots in the arterial system and are the primary targets of anti-platelet medications. In collagen flow-chamber experiments, the research team found that thrombocytes could not form 3-dimensional aggregates under high-flow conditions, a key step in the pathogenesis of stroke and heart attack.

Collaborative studies with colleagues at Penn's School of Veterinary Medicine, Karen Rosenthal, DVM, MS, and Jeff Runge, DVM, and Tim Stalker, in Department of Medicine –Hematology/Oncology, at the Perelman School of Medicine, next compared the ability of platelets and thrombocytes to form intra-vascular clots in mice and similarly sized parakeets. The mice, but not the birds, developed clots that prevented blood flow after arterial injury due to the ability of platelets, but not thrombocytes, to stick to each other under high flow conditions.

Although the researchers caution that this prediction cannot be tested in all contexts, the finding that equivalent degrees of arterial vessel wall injury in vessels of similar size and equal hemodynamic forces result in the occlusion in mammals but not in birds is consistent with the hypothesis that platelets mediate a more efficient clotting response than thrombocytes.

Dr. Kahn, the study’s senior author, concluded, “Although the reason for platelet evolution in mammals can never be known with certainty, it is tempting to speculate that platelets may have allowed early mammals to better survive trauma and thereby provided a survival advantage.”

The research was supported by National Institute of Health and by an American Heart Association (AHA) postdoctoral fellowship.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Jessica Mikulski | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>