Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hearing loss study reveals role of bone hardness in tissue function

18.11.2010
Scientists are reporting the first direct evidence that a subtle change in the physical properties of a tissue can affect its function. The finding has immediate implications for understanding several rare hearing disorders, they said, and ultimately could offer insight into such conditions as osteoporosis, arthritis, cardiovascular disease and cancer.

In their study, the scientists discovered that blocking the function of a particular molecule in the ear bone of mice decreased the hardness of the bone, causing hearing loss. Reactivating the molecule restored the bone’s hardness – and the animals’ hearing.

The research likely explains the previously unknown cause of hearing loss in the human disease cleidocranial dysplasia, a genetic bone syndrome,said co-author Lawrence Lustig, MD, UCSF professor of otolaryngology, and may explain hearing loss associated with some other bone diseases.

More broadly, the finding reveals the molecular pathway that regulates the physical properties of extracellular matrix – the interlocking mesh of molecules between cells – in the ear’s cochlear bone. The matrix is responsible for the hardness of human tissues, ranging from stiff bone and enamel to compliant brain and skin.

Perhaps most intriguing is the discovery that variations in the physical properties of extracellular matrix affect tissue function. This finding should lead to insights into abnormal matrix properties in the tissues of diseases throughout the body, the researchers said, including osteoporosis and arthritis.

The polar bear’s ear bone is believed to be the hardest in its body, possibly helping the animal hear under water.

“Our finding demonstrates that establishing and maintaining the proper calibration of physical properties is essential for healthy tissue function,” said the senior author of the study, Tamara Alliston, PhD, assistant professor of orthopaedic surgery and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.

Scientists have known that physical cues, such as extracellular matrix stiffness, direct the differentiation of stem cells into specific cell types, such as heart, liver and brain cells. They also have known that disruption of these cues underlies a wide range of diseases, such as osteoarthritis, cardiovascular disease and cancer.

However, they have not known the molecular mechanisms that establish the physical properties of extracellular matrix, nor the link between these properties and tissue function.

In the current study, recently reported in EMBO (online Sept. 17, 2010), the team, led by Jolie L. Chang, MD, a resident in the UCSF Department of Otolaryngology and Head and Neck Surgery, set out to investigate the mechanisms involved.

Earlier studies, conducted at UCSF, showed that a molecule known as transforming growth factor beta (TGF-â) regulates the turnover of bone cells known as osteoblasts, by inhibiting a molecule known as Runx2. Disrupting TGF-â’s regulation of Runx2 causes dysplastic clavicles and open cranial sutures.

These skeletal deformities, seen in the human genetic bone disease cleidocranial dysplasia, result from a defective copy of the Runx2 gene. Patients with CCD experience “sensorineural” hearing loss – caused by damage to the cochlear bone or nerve damage.

Given these conditions, the teams used two mouse models of CCD to study the regulation and role of bone matrix properties in the cochlear bone.

They focused on this bone in part because of anecdotal evidence in patients, and research in whales, flamingos and polar bears, indicating that the bone is the hardest in the body, in the case of whales possibly helping the animals hear under water. The required stiffness, the team suspected, likely would be precisely calibrated.

They first conducted a nanoscale analysis of several mouse bones in the head and ear, establishing that the cochlea bone was by far the stiffest.

Then, in what they considered a major insight, they discovered that TGF-â regulates Runx2 to establish the physical property of the extracellular matrix of the cochlea bone. “This told us,” said Chang, “that Runx2—a key transcriptional regulator that helps the cell select its cell fate—also controls the physical properties of the matrix.”

Finally, by manipulating Runx2 activity through TGF-â, the team determined that the physical quality of the bone matrix affects hearing.

Now, the team is investigating the molecules “downstream” of Runx2, to gain further insight into the mechanism regulating the physical properties of bone. They also are studying if these mechanisms define the stiffness of matrices in other skeletal tissues.

“We want to see if TGF-â targets the cartilage transcription factor to make cartilage more or less stiff,” Alliston said. “We think that the stiffness is degraded in arthritis and that this further disrupts chondrocyte cells, exacerbating the disease.”

Other co-authors of the study are Delia S. Brauer, Jacob Johnson, Carol Chen, Omar Akil, Emily N. Chin, Kristen Butcher, Richard A. Schneider, Anil Lalwani, Rik Derynck, Grayson W. Marshall, and Sally J. Marshall, of UCSF, Guive Balooch, at the time a postdoctoral fellow in the lab of co-author Robert O. Ritchie, of UC Lawrence Berkeley National Laboratories, Mary Beth Humphrey, of University of Oklahoma Health Science Center, and Alexandra E Porter, of Imperial College London.

The study was funded primarily by the National Institutes of Health, the Deafness Research Foundation, The Arthritis Foundation, UCSF School of Dentistry Creativity Fund, Arthritis Foundation, Deafness Research Foundation and Department of Energy.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jennifer O'Brien | EurekAlert!
Further information:
http://www.ucsf.edu
http://news.ucsf.edu/releases/hearing-loss-study-reveals-role-of-bone-hardness-in-tissue-function

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>