Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What you hear could depend on what your hands are doing

15.10.2012
A new finding could lead to strategies for treating speech loss after a stroke and helping children with dyslexia; interestingly, it might also explain one reason people perceive a presidential candidate's speech differently
New research links motor skills and perception, specifically as it relates to a second finding—a new understanding of what the left and right brain hemispheres "hear." Georgetown University Medical Center researchers say these findings may eventually point to strategies to help stroke patients recover their language abilities, and to improve speech recognition in children with dyslexia.

The study, presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience, is the first to match human behavior with left brain/right brain auditory processing tasks. Before this research, neuroimaging tests had hinted at differences in such processing.

"Language is processed mainly in the left hemisphere, and some have suggested that this is because the left hemisphere specializes in analyzing very rapidly changing sounds," says the study's senior investigator, Peter E. Turkeltaub, M.D., Ph.D., a neurologist in the Center for Brain Plasticity and Recovery. This newly created center is a joint program of Georgetown University and MedStar National Rehabilitation Network.

Turkeltaub and his team hid rapidly and slowly changing sounds in background noise and asked 24 volunteers to simply indicate whether they heard the sounds by pressing a button.

"We asked the subjects to respond to sounds hidden in background noise," Turkeltaub explained. "Each subject was told to use their right hand to respond during the first 20 sounds, then their left hand for the next 20 second, then right, then left, and so on." He says when a subject was using their right hand, they heard the rapidly changing sounds more often than when they used their left hand, and vice versa for the slowly changing sounds.

"Since the left hemisphere controls the right hand and vice versa, these results demonstrate that the two hemispheres specialize in different kinds of sounds—the left hemisphere likes rapidly changing sounds, such as consonants, and the right hemisphere likes slowly changing sounds, such as syllables or intonation," Turkeltaub explains. "These results also demonstrate the interaction between motor systems and perception. It's really pretty amazing. Imagine you're waving an American flag while listening to one of the presidential candidates. The speech will actually sound slightly different to you depending on whether the flag is in your left hand or your right hand."

Ultimately, Turkeltaub hopes that understanding the basic organization of auditory systems and how they interact with motor systems will help explain why language resides in the left hemisphere of the brain, and will lead to new treatments for language disorders, like aphasia (language difficulties after stroke or brain injury) or dyslexia.

"If we can understand the basic brain organization for audition, this might ultimately lead to new treatments for people who have speech recognition problems due to stroke or other brain injury. Understanding better the specific roles of the two hemispheres in auditory processing will be a big step in that direction. If we find that people with aphasia, who typically have injuries to the left hemisphere, have difficulty recognizing speech because of problems with low-level auditory perception of rapidly changing sounds, maybe training the specific auditory processing deficits will improve their ability to recognize speech," Turkeltaub concludes.

Turkeltaub and his co-authors report having no personal financial interests related to the study.

About the Center for Brain Plasticity and Recovery
The Center for Brain Plasticity and Recovery, a Georgetown University and MedStar National Rehabilitation Network collaboration, focuses on the study of biological processes underlying the brain's ability to learn, develop, and recover from injury. Through interdisciplinary laboratory and clinical research and patient care, the Center for Brain Plasticity and Recovery aims to find ways to restore cognitive, sensory, and motor function caused by neurological damage and disease.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>