Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Head injuries can make children loners

10.04.2014

Study also suggests potential treatment

New research has found that a child's relationships may be a hidden casualty long after a head injury.

Neuroscientists at Brigham Young University studied a group of children three years after each had suffered a traumatic brain injury – most commonly from car accidents. The researchers found that lingering injury in a specific region of the brain predicted the health of the children's social lives.

"The thing that's hardest about brain injury is that someone can have significant difficulties but they still look okay," said Shawn Gale, a neuropsychologist at BYU. "But they have a harder time remembering things and focusing on things as well and that affects the way they interact with other people. Since they look fine, people don't cut them as much slack as they ought to."

Gale and Ph.D. student Ashley Levan authored a study to be published April 10 by the Journal of Head Trauma Rehabilitation, the leading publication in the field of rehabilitation.

The study compared the children's social lives and thinking skills with the thickness of the brain's outer layer in the frontal lobe. The brain measurements came from MRI scans and the social information was gathered from parents on a variety of dimensions, such as their children's participation in groups, number of friends and amount of time spent with friends.

A second finding from the new study suggests one potential way to help. The BYU scholars found that physical injury and social withdrawal are connected through something called "cognitive proficiency." Cognitive proficiency is the combination of short-term memory and the brain's processing speed.

"In social interactions we need to process the content of what a person is saying in addition to simultaneously processing nonverbal cues," Levan said. "We then have to hold that information in our working memory to be able to respond appropriately. If you disrupt working memory or processing speed it can result in difficulty with social interactions."

Separate studies on children with ADHD, which also affects the frontal lobes, show that therapy can improve working memory. Gale would like to explore in future research with BYU's MRI facility if improvements in working memory could "treat" the social difficulties brought on by head injuries.

"This is a preliminary study but we want to go into more of the details about why working memory and processing speed are associated with social functioning and how specific brain structures might be related to improve outcome," Gale said.

Joe Hadfield | EurekAlert!
Further information:
http://www.byu.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>