Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Haven't my neurons seen this before?'


Researchers show how neurons respond to sequences of familiar objects

The world grows increasingly more chaotic year after year, and our brains are constantly bombarded with images. A new study from Center for the Neural Basis of Cognition (CNBC), a joint project between Carnegie Mellon University and the University of Pittsburgh, reveals how neurons in the part of the brain responsible for recognizing objects respond to being shown a barrage of images. The study is published online by Nature Neuroscience.

A new study from Carnegie Mellon researchers shows how neurons react to a stream of images. Test subjects were trained to look at images of items (below) until those images became familiar.

Credit: Center for Neural Basis of Cognition, a joint project between Carnegie Mellon University and the University of Pittsburgh

The CNBC researchers showed animal subjects a rapid succession of images, some that were new, and some that the subjects had seen more than 100 times. The researchers measured the electrical response of individual neurons in the inferotemporal cortex, an essential part of the visual system and the part of the brain responsible for object recognition.

In previous studies, researchers found that when subjects were shown a single, familiar image, their neurons responded less strongly than when they were shown an unfamiliar image.

However, in the current study, the CNBC researchers found that when subjects were exposed to familiar and unfamiliar images in a rapid succession, their neurons — especially the inhibitory neurons — fired much more strongly and selectively to images the subject had seen many times before.

"It was such a dramatic effect, it leapt out at us," said Carl Olson, a professor at Carnegie Mellon. "You wouldn't expect there to be such deep changes in the brain from simply making things familiar. We think this may be a mechanism the brain uses to track a rapidly changing visual environment."

The researchers then ran a similar experiment in which they used themselves as subjects, recording their brain activity using EEG. They found that the humans' brains responded similarly to the animal subjects' brains when presented with familiar or unfamiliar images in rapid succession. In future studies, they hope to link these changes in the brain to improvements in perception and cognition.


Co-authors of the study include Travis Meyer of Carnegie Mellon and the CNBC, and Christopher Walker and Raymond Cho of the Department of Psychiatry at Pitt. The research was funded by the National Institutes of Health's National Eye Institute and National Institute of Mental Health (R01 EY018620, P50 MH084053, K08 MH080329), and the Pennsylvania Department of Health's Commonwealth Universal Research Enhancement Program.

About Carnegie Mellon University:

Carnegie Mellon is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 12,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon has campuses in Pittsburgh, Pa., California's Silicon Valley and Qatar, and programs in Africa, Asia, Australia, Europe and Mexico.

Jocelyn Duffy | Eurek Alert!

Further reports about: Qatar images improvements mechanism neurons problems responsible studies subjects

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>