Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hard work improves the taste of food

05.11.2010
It's commonly accepted that we appreciate something more if we have to work hard to get it, and a Johns Hopkins University study bears that out, at least when it comes to food.

The study seems to suggest that hard work can even enhance our appreciation for fare we might not favor, such as the low-fat, low calorie variety. At least in theory, this means that if we had to navigate an obstacle course to get to a plate of baby carrots, we might come to prefer those crunchy crudités over the sweet, gooey Snickers bars or Peanut M&Ms more easily accessible via the office vending machine.

"Basically, what we have shown is that if you have to expend more effort to get a certain food, not only will you value that food more, but it might even taste better to you," explained Alexander Johnson, an associate research scientist in the Department of Psychological and Brain Sciences at the Krieger School of Arts and Sciences at Johns Hopkins. "At present, we don't know why effort seems to boost the taste of food, but we know that it does, and this effect lasts for at least 24 hours after the act of working hard to get the food."

The study, titled "Greater effort boosts the affective taste properties of food," appears in this week's issue of the Proceedings of the Royal Society B.

The study results are significant not only because they hold out hope that people who struggle to maintain a healthy weight could be conditioned to consume lower calorie foods, but because they also might provide insight into methods of altering other less-than-optimal behavior, according to Johnson, who led the study.

Johnson teamed up on the project with Michela Gallagher, the Krieger-Eisenhower Professor of Psychological and Brain Sciences and Neuroscience and vice provost for academic affairs at Johns Hopkins. Using ordinary laboratory mice, the team conducted two experiments.

In the first, mice were trained to respond to two levers. If the mice pressed one lever once, they were rewarded with a sugary treat. Another lever had to be pressed 15 times to deliver a similar snack. Later, when given free access to both tidbits, the rodents clearly preferred "the food that they worked harder for," Johnson said.

In the second experiment, the team wanted to ascertain whether the animals' preference for the harder-to-obtain food would hold if those morsels were low-calorie. So half the mice received lower calorie goodies from a high-effort lever, and half got them from a low-effort lever. When both groups of mice were given free access to the low-calorie food later, those who had used the high-effort lever ate more of it and even seemed to enjoy it more than did the other group.

"We then analyzed the way in which the mice consumed the food," Johnson explained. "Why did we do this? Because food intake can be driven by a variety of factors, including how it tastes, how hungry the mice were beforehand, and how 'sated' or full the food made them feel."

Johnson and Gallagher used licking behavior as a measure of the rodents' enjoyment of their treats, and found that the mice that had to work harder for their low-cal rewards did, in fact, savor them more.

"Our basic conclusion is that under these conditions, having to work harder to get a certain food changes how much that food is valued, and it does that by changing how good that food tastes," Johnson said. "This suggests that, down the road, obese individuals might be able to alter their eating habits so as to prefer healthier, low calorie food by manipulating the amount of work required to obtain the food. Of course, our study didn't delve into that aspect. But the implications certainly are there."

The study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of Mental Health.

Copies of the study are available from Lisa De Nike at Lde@jhu.edu or 443-287-9960.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

Further reports about: Brain Sciences low calorie variety lower calorie goodies

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>