Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Half of world's population could face climate-induced food crisis by 2100

09.01.2009
Rapidly warming climate is likely to seriously alter crop yields in the tropics and subtropics by the end of this century and, without adaptation, will leave half the world's population facing serious food shortages, new research shows.

To compound matters, the population of this equatorial belt – from about 35 degrees north latitude to 35 degrees south latitude – is among the poorest on Earth and is growing faster than anywhere else.

"The stresses on global food production from temperature alone are going to be huge, and that doesn't take into account water supplies stressed by the higher temperatures," said David Battisti, a University of Washington atmospheric sciences professor.

Battisti is lead author of the study in the Jan. 9 edition of Science. He collaborated with Rosamond Naylor, director of Stanford University's Program on Food Security and the Environment, to examine the impact of climate change on the world's food security.

"This is a compelling reason for us to invest in adaptation, because it is clear that this is the direction we are going in terms of temperature and it will take decades to develop new food crop varieties that can better withstand a warmer climate," Naylor said.

"We are taking the worst of what we've seen historically and saying that in the future it is going to be a lot worse unless there is some kind of adaptation."

By combining direct observations with data from 23 global climate models that contributed to Nobel prize-winning research in 2007, Battisti and Naylor determined there is greater than a 90 percent probability that by 2100 the lowest growing-season temperatures in the tropics and subtropics will be higher than any temperatures recorded there to date.

They used the data as a filter to view historic instances of severe food insecurity, and concluded such instances are likely to become more commonplace. Those include severe episodes in France in 2003 and the Ukraine in 1972. In the case of the Ukraine, a near-record heat wave reduced wheat yields and contributed to disruptions in the global cereal market that lasted two years.

"I think what startled me the most is that when we looked at our historic examples there were ways to address the problem within a given year. People could always turn somewhere else to find food," Naylor said. "But in the future there's not going to be any place to turn unless we rethink our food supplies."

The serious climate issues won't be limited to the tropics, the scientists conclude. As an example, they cite record temperatures that struck Western Europe in June, July and August of 2003, killing an estimated 52,000 people. The summer-long heat wave in France and Italy cut wheat yields and fodder production by one-third. In France alone, temperatures were nearly 6.5 degrees Fahrenheit above the long-term mean, and the scientists say such temperatures could be normal for France by 2100.

In the tropics, the higher temperatures can be expected to cut yields of the primary food crops, maize and rice, by 20 to 40 percent, the researchers said. But rising temperatures also are likely to play havoc with soil moisture, cutting yields even further.

"We have to be rethinking agriculture systems as a whole, not only thinking about new varieties but also recognizing that many people will just move out of agriculture, and even move from the lands where they live now," Naylor said.

Currently 3 billion people live in the tropics and subtropics, and their number is expected to nearly double by the end of the century. The area stretches from the southern United States to northern Argentina and southern Brazil, from northern India and southern China to southern Australia and all of Africa.

The scientists said that many who now live in these areas subsist on less than $2 a day and depend largely on agriculture for their livelihoods.

"When all the signs point in the same direction, and in this case it's a bad direction, you pretty much know what's going to happen," Battisti said. "You are talking about hundreds of millions of additional people looking for food because they won't be able to find it where they find it now."

He said wheat makes up one-quarter of the calories consumed in India, but growth in wheat yields there have been stagnant for the last decade.

Temperature increases from climate change are expected to be less in equatorial regions than at higher latitudes, but because average temperatures in the tropics today are much higher than at midlatitudes, rising temperature will have a greater impact on crop yields in the tropics.

Recent UW research has shown that even with much smaller temperature increases in the tropics, the impacts of warmer climate will be greater there because life in the tropics does not encounter much temperature variation and so is less adaptable. That makes an even stronger case to begin now searching for ways to deal with substantially warmer conditions, Battisti said.

"You can let it happen and painfully adapt, or you can plan for it," he said. "You also could mitigate it and not let it happen in the first place, but we're not doing a very good job of that."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>