Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Half of Americans live more than an hour away from lifesaving stroke care

25.02.2010
Penn study shows 135 million americans in danger, points to medical helicopters to transport more victims to primary stroke centers faster

When stroke strikes, choking off blood supply to the brain, every minute counts: Nearly 2 million neurons die each minute a stroke is left untreated, making it a race to recognize symptoms so that lifesaving "clot-busting" drugs can be administered.

Forty-five percent of Americans – 135 million people -- are more than an hour away from primary stroke centers, the facilities that are best equipped to care for them if they are stricken by the condition, according to new research led by the University of Pennsylvania School of Medicine that will be presented February 24 at the American Stroke Association's International Stroke Conference in San Antonio.

Less than a quarter of U.S. residents can reach one of those facilities in less than a half hour. The authors say the identification of these gaps in access is an important step in cutting the deadly toll of stroke, which is the third leading cause of death and the leading cause of long-term disability in the United States. The study revealed one existing way to narrow these disparities: Using existing air ambulance resources to fly stroke patients to appropriate care would cut the number of Americans without 60-minute access to a primary stroke center by half.

"Our findings show that many people do not have timely access to the type of care that they would need to save their life or minimize damage from a stroke," says senior author Brendan G. Carr, MD, MS, an assistant professor of Emergency Medicine and Biostatistics and Epidemiology at Penn. "The challenge here is to think about how we can design a system that give everyone their best chance of survival."

Distance from primary stroke centers a key factor in how well patients fare. Currently, less than 10 percent of ischemic stroke patients – those with blood clots blocking blood flow to the brain -- receive tPA, the IV clot-dissolving drug that is proven to slash both the cognitive and physical disabilities associated with stroke. Typically, the drug must be given within three hours of symptom onset in order to be most effective. Unfortunately, precious time may be lost even before the patient decides to come to the hospital, since many patients fail to quickly recognize or act upon stroke symptoms – which can include weakness, strange sensations on one side of the body, confusion, difficulty speaking, visual problems and dizziness.

The new study results showed that overall, fewer than 1 in 4 Americans (22 percent) have access to a primary stroke center within 30 minutes, and just over half (55 percent) can reach one within an hour when ambulances are not permitted to cross state lines. Patients are most able to get to a primary stroke center by ground within 60 minutes if they live in the Northeast (64 percent), followed by the Midwest (61 percent). In the South and West portions of the country, just over half (52 percent and 51 percent) of patients can reach those advanced facilities within an hour. Five states had no in-state ground access to primary stroke centers within 60 minutes, and only in the District of Columbia could all residents reach such a facility in an hour. The addition of air ambulances, however, boosts access substantially: within a half hour, 26 percent of the population could reach a primary stroke center, and 79 percent could be transported to one within 60 minutes. The improvement found was most dramatic in the western U.S., where the number of patients transported within an hour would rise to 81 percent if helicopters were used.

The authors used data from the U.S. Census Bureau combined with an inventory of hospitals that have received certification as primary stroke centers by the hospital accrediting body known as The Joint Commission, and they calculated driving times and ambulance dispatch and response times between each population "block group" and the nearest stroke center. They also obtained data showing the location of all helipad depots operated by air medical service providers across the United States and calculated similar dispatch and response times to illustrate how utilizing helicopters could speed access for more patients.

The goal of the new research, Carr says, was to think differently about how to deliver stroke care, perhaps by policy solutions such as allowing ambulances to cross state lines, or using helicopters to more rapidly transfer patients to stroke centers. No national system for acute care of stroke patients currently exists, unlike the regionalized system for transport of trauma patients – those who've had car crashes, suffered falls, or been stabbed or shot – to hospitals that meet specific care benchmarks, making it possible for 83 percent of the U.S. population to reach trauma care within an hour.

In addition to air transport of stroke patients to high-level facilities, the authors suggest that other, lower-cost solutions could also be employed to extend the net of optimal care to a greater number of patients across the nation. Among suggestions: the development of inter-hospital referral networks, using telemedical technology to connect smaller or rural hospitals with guidance from specialty physicians trained in stroke care, and offering incentives for the development of stroke centers in underserved areas.

"Strokes often strike without warning. We are all at risk, and the therapy is time-critical. Data like these brings us closer to taking a big step in the development of not only a more robust stroke system, but of an emergency care system that can serve anyone, no matter where they are in the country," Carr says. "Using technology, we hope to develop new ways to connect hospitals to each other so that instead of always delivering the patient to the doctor, we will be able to deliver the doctor to the patient."

Other authors of the study include lead author Karen C. Albright, DO, MPH; Brett C. Meyer, MD; and Justin A. Zivin, MD, PhD at the University of California San Diego; Dawn E. Matherne-Meyer, APRN, BC, FNP at the University of California Los Angeles School of Nursing; Patrick D. Lyden, MD, at Cedars-Sinai Medical Center; and Charles C. Branas, PhD, at the University of Pennsylvania School of Medicine.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn's School of Medicine is currently ranked #3 in U.S. News & World Report's survey of research-oriented medical schools, and is consistently among the nation's top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine's patient care facilities include:

The Hospital of the University of Pennsylvania – the nation's first teaching hospital, recognized as one of the nation's top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation's first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2008, Penn Medicine provided $282 million to benefit our community.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>