Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First GWAS studies of obsessive-compulsive disorder and Tourette syndrome published

14.08.2012
Two papers that will appear in the journal Molecular Psychiatry, both receiving advance online release, may help identify gene variants that contribute to the risks of developing obsessive-compulsive disorder (OCD) or Tourette syndrome (TS).

Both multi-institutional studies were led by Massachusetts General Hospital (MGH) investigators, and both are the first genome-wide association studies (GWAS) in the largest groups of individuals affected by the conditions.

"Previous studies of these disorders have demonstrated that both TS and OCD are strongly heritable and may have shared genetic risk factors, but identification of specific genes has been a huge challenge," says Jeremiah Scharf, MD, PhD, of the Psychiatric and Neurodevelopmental Genetics Unit (PNGU) in the MGH Departments of Psychiatry and Neurology, a co-lead author of both papers and co-chair of the Tourette Syndrome Association International Consortium for Genetics. "These new studies represent major steps towards understanding the underlying genetic architecture of these disorders."

An anxiety disorder characterized by obsessions and compulsions that disrupt patients' lives, obsessive-compulsive disorder (OCD) is the fourth most common psychiatric illness. Tourette syndrome, a chronic disorder characterized by motor and vocal tics, usually begins in childhood and is often accompanied by conditions like OCD or attention-deficit hyperactivity disorder. Both conditions have a high risk of recurrence in close relatives of affected individuals, but previous studies that compared affected and unaffected individuals were not large enough to identify specific genes or areas of the genome that contribute to risk.

Since many gene variants probably contribute to risk for both conditions, the research teams undertook GWAS investigations, which analyze hundreds of thousands of gene variants called SNPs (single-nucleotide polymorphisms) in thousands of individuals with and without the condition of interest. The International OCD Foundation Genetic Collaborative, consisting of more than 20 research groups in nine countries, analyzed almost 480,000 SNPs in 1,465 individuals with OCD, more than 5,500 controls and from 400 trio samples consisting of an OCD patient and both parents. The Tourette Syndrome Association International Consortium for Genetics and the TS GWAS Consortium, representing 22 groups across seven countries, analyzed 484,000 SNPs across almost 1,500 cases and more than 5,200 controls.

The OCD study – led by Evelyn Stewart, MD, of the MGH-PNGU, who is now based at the University of British Columbia, and David Pauls, PhD, MGH-PNGU – identified possible associations close to a gene called BTBD3, which is closely related to a gene that may be involved in Tourette Syndrome, and within DLGAP1, a close relative of a gene that produces OCD-like symptoms in mice if it is deleted. The Tourette study was led by Scharf and Pauls and found evidence of a possible association with a gene called COL27A1, which may be expressed in the cerebellum during development, and with variants that help regulate gene expression in the frontal cortex.

None of these or other identified SNPs reached the high threshold of genome-wide significance, which would indicate that the associations represented true risk factors, and the authors stress that additional, larger studies are required. "Although GWAS analysis allows much more comprehensive examination of the entire genome than do studies focused on particular families or candidate genes, these two studies are still underpowered and should be interpreted with caution," says Pauls, a co-senior author of both papers. "The current results are interesting and provide us with a starting point for analyzing future studies that must be done to replicate and extend these findings."

Scharf adds that the next steps should include testing the SNPs identified by these studies in other groups of patients and controls, analyzing both study groups together to identify genes that contribute to the risk of both disorders, and expanding international collaborations to increase the size and power of patient samples for both OCD and TS. "If future studies confirm that some of these variants do contribute to risk – either directly or by altering the function of other risk genes – that would suggest both novel disease mechanisms and might give us new treatment targets," he says.

Scharf is an assistant professor of Neurology, Stewart a lecturer on Psychiatry and Pauls a professor of Psychiatry at Harvard Medical School. Support for both studies includes grants from the National Institutes of Health, the Tourette Syndrome Association, the David Judah Fund and the McIngvale Fund.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>