Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Guilt, Cooperation Linked by Neural Networks

12.05.2011
A UA study using economic models backed up by fMRI scans offers new insights on why people choose to cooperate rather than act selfishly. The study appears in the current issue of the neuroscience journal Neuron.

A team of researchers at the University of Arizona has brought a high-tech tool to bear on the study of a familiar and age-old emotion – guilt.

What makes the investigation unique is the use of fMRI scans to target the regions of the brain associated with guilt. It also opens a new avenue in understanding behavioral disorders associated with guilt, such as depression and anxiety.

The study, "Triangulating the Neural, Psychological and Economic Bases of Guilt Aversion," is published by CELL today in the journal Neuron.

The authors – Luke Chang, Alec Smith, Martin Dufwenberg and Alan Sanfey – also come from two seemingly disparate areas: cognitive neuroscience and economics.

Sanfey is a recognized neuroscientist who also has an appointment at the Donders Institute at Radboud University in The Netherlands, and Chang is a doctoral student in the UA psychology department.

Dufwenberg is a behavioral economist in the UA Eller College of Management. Smith, a former doctoral student in Eller's economics department, is now a post-doctoral scholar in economics at the California Institute of Technology.

The collaboration began when Dufwenberg and Smith were "reaching out for people who would be interested" in cross-disciplinary partnerships when they met and teamed up with Sanfey and Chang.

Guilt, in this case the failure to live up to the expectations of others. It is an emotion that likely has its roots in the evolutionary history of humans. And the aversion to guilt is a factor in motivating cooperative behavior.

The thrust of the study, said Chang, is trying to understand why people cooperate.

"One idea is that most people cooperate because it feels good to do it. And there is some brain imaging data that shows activity in reward-related regions of the brain when people are cooperating.

"But there is a whole other world of motivation to do good because you don't want to feel bad. That is the idea behind guilt aversion," Chang said.

To test this, 30 volunteers played a game appropriate for testing a mathematical theory of guilt aversion that Dufwenberg devised. In it, "investors" were asked to award a certain amount of money to a "trustee," whose expectations regarding how much the investor expected to get back were elicited. The trustees were then scanned using fMRI while deciding how much money should be returned to their investors.

"The theory will then operate on the expectations the players have," said Dufwenberg. "I would feel guilt if I give you less than I believe that you expect that you will get. Then we measure expectations in the experimental situation. The theory predicts when people will experience guilt. Then we see how that correlates with brain activity."

The fMRI scans identified regions in the brain involved in guilt-motivated cooperation while test subjects made their decisions whether or not to honor a partner's trust. Different areas of the brain became active during those decisions based on their choosing to cooperate, or to abuse the trust and maximize their own financial gain.

The report said the results show that "a neural system previously implicated in expectation processing plays a critical role in assessing moral sentiments that in turn can sustain human cooperation in the face of temptation."

Civilized society is based on cooperation and trust, from behaviors a simple and informal as opening a door for someone carrying heavy packages or tipping a restaurant server to complex legal agreements between corporations or countries. Understanding the neural structures behind these behaviors promises to offer new insights into complex behaviors of trust and reciprocity.

Chang said the collaboration among economists, psychologists and neuroscientists is instrumental in understanding the biological mechanisms underlying complex social behavior, such as guilt, and has real world implications for understanding clinical disorders such as depression anxiety and psychopathy.

Alan Sanfey, the senior author of the study, said "the study demonstrates the potential in cross-disciplinary collaborations of this nature, for example, in developing more complete models of how people make decisions in complex social situations."

As a behavioral economist, Dufwenberg argues that factors such as emotions may be important drivers of economic outcomes, and that the mathematical models that economists use can be augmented to include such psychological aspects.

"In the end, it's a two-way exchange. Economists take inspiration from the richer concept of man usually considered in psychology, but at the same time they have something to offer psychologists through their analytical tools.

"Remember how guilt depends on beliefs about beliefs about outcomes? These are hard to observe, hard to test. I'm excited about the idea of using neuroscience tools to test economic theory."

CONTACT:

Alan Sanfey
Corresponding author
asanfey@u.arizona.edu
LINK:
Neuron article and video:
http://www.cell.com/neuron/abstract/S0896-6273%2811%2900299-6

Alan Sanfey | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: MRI scan Neuron biological mechanism fMRI scans social situation

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>