Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth defects in cystic fibrosis may start before birth

10.11.2010
A new study using a pig model of cystic fibrosis (CF) suggests that low levels of a growth promoting hormone at or before birth may contribute to growth defects in patients with CF.

The study, led by University of Iowa researchers and published online the week of Nov. 8 in the Early Edition of the Proceedings of the National Academy of Sciences, could help predict the severity of the disease in patients and may lead to new therapies for growth defects in people with CF.

Growth defects are common in people with CF and have been blamed, in part, on low levels of the growth-promoting hormone called insulin-like growth factor 1 (IGF1). Traditionally, the malnutrition and lung inflammation that accompany CF have been blamed for the decreased levels of IGF1. However, even patients who are relatively healthy often do not reach their full growth potential, and newborns with CF often are smaller at birth than healthy babies.

To investigate the relationship between neonatal IGF1 levels and growth patterns in CF, the research team studied newborn pigs with a CF-causing gene mutation. This animal model, which was generated by the UI researchers and colleagues at the University of Missouri in 2008, has many of the same symptoms and complications that are seen in humans with CF.

"By examining IGF1 at this time point, we eliminated consequences of lung inflammation, which is absent at birth, and malnutrition, because nutrition in utero is provided by the mother," explained Leah Reznikov, Ph.D., UI postdoctoral fellow in internal medicine and co-first author of the study. "We found that IGF1 levels were significantly reduced at birth in CF newborn pigs."

In addition, the UI researchers found that newborn CF pigs had shorter, smaller bones than pigs without CF suggesting that decreased IGF1 levels are associated with the growth defects, and that IGF1 levels may be reduced even before the pigs are born.

These findings led Reznikov and colleagues, including co-first author Mark Rogan, M.D., a former UI postdoctoral fellow in internal medicine, to examine levels of IGF1 in newborn humans with CF.

By testing blood samples collected through the Iowa Neonatal Metabolic Screening Program and the Iowa Department of Public Health, the researchers found that infants with CF have reduced IGF1 levels compared to healthy infants.

"Collectively, these findings suggest that IGF1 deficits begin very early in the course of CF disease and reductions in IGF1 may, in part, explain growth defects observed at birth in infants with CF," Reznikov said. "The findings also imply that IGF1 may serve as a potential biomarker of the disease and may be useful in prognostication, care and treatment of people with CF."

Patients with CF currently receive replacement pancreatic enzymes and insulin supplementation to counteract effects of CF. One possibility raised by the new findings is that IGF1 supplementation, beginning in infancy, might also be beneficial for growth in patients with CF. However, Reznikov cautioned that more testing is needed before this approach could be tested in humans.

"We would like to increase the sample size in our human studies and examine other parameters to better understand the relationship among CF, IGF1 and growth defects," she said."

If these test results are positive, Reznikov noted that the CF pigs would provide an excellent preclinical system to test whether IGF1 supplementation would be beneficial early in CF.

In addition to Reznikov and Rogan, the research team included Michael Welsh, M.D., UI professor of internal medicine and molecular physiology and biophysics and a Howard Hughes Medical Institute investigator, and David Stoltz, M.D., Ph.D., UI assistant professor of internal medicine. UI researchers Alejandro Pezzulo; Nicholas Gansemer; Joseph Zabner; Douglas Fredericks; and Paul McCray Jr.; and University of Missouri researchers Melissa Samuel and Randall Prather also contributed to the study.

The research was funded in part by grants from the National Institutes of Health and the Cystic Fibrosis Foundation.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>