Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas emissions study under way by AgriLife Research

06.04.2010
Gas chromatograph helps gather accurate data

Texas AgriLife Research scientists in Amarillo are embarking on a new study amid recent concerns over greenhouse gas emissions from crop fertilization, tillage and feed yard operations.

Dr. Ken Casey, AgriLife Research air quality engineer, and Al Caramanica, a research chemist, have added a few new laboratory tools to help measure three greenhouse gases: nitrous oxide, carbon dioxide and methane.

Casey recently purchased a Varian gas chromatograph with three detectors set up for automatic injection of gas samples from gas-tight vials that will allow simultaneous detection of all three gases from samples taken at feed yards.

"We use a non-flow-through non-steady-state chamber that collects emissions off a surface, in this case manure in the pen, and we use a syringe to draw the gas sample from the air space in the chamber and then that is injected into vials for testing," Casey said.

Before the vials are filled with samples from the field, each is flushed with helium twice then evacuated, Caramanica said. When returned to the lab, those vials are placed on the gas chromatograph in an auto-sampler and samples are run through three different detectors to determine the amount of nitrous oxide, carbon dioxide and methane.

He said each sample takes approximately five minutest to test. With the auto-sampler, they can collect 128 samples and load them in the trays for processing and then come back the next day and collate the data.

The researchers explained that samples are taken in 15-minute intervals from various locations throughout a pen: at time of chamber placement, at 15 minutes and 30 minutes to determine the buildup of emissions.

"This work area will focus primarily on nitrous oxide," Casey said.

Nitrous oxide has approximately 310 times the global warming potential of carbon dioxide, he said. It is produced as a part of the nitrogen cycle through the microbial processes of nitrification and denitrification, which are responsible for converting organic nitrogen in livestock manure and urine to inorganic forms that are absorbed and used by plants.

Casey said there are many other sources of nitrous oxide, but his study is only concerned with the feed yard. The three primary objectives of their study are:

Detect and quantify greenhouse gas emissions from beef cattle feedlot manure management systems, especially nitrous oxide, for its greater capacity to absorb the Earth's radiative energy.
Establish baseline flux rates of greenhouse gases produced by local feedlots.
Help establish manure-management techniques that contribute to fewer emissions.
"We want to try to understand how much is being emitted," Casey said. "But we also expect to see a substantial variation across the feed yard and over time, so we want to understand the mechanisms that control the emissions."

In addition to testing under wet and dry conditions, the study will be long-term to enable testing through different seasons, and then also a section of a feed yard pen pad will be lifted and taken to a greenhouse where conditions can be manipulated to determine mechanistically what is happening, Casey said.

"It may take us several years to get a reasonable handle on the mechanisms," he said. "In three to six months we will have spatial variability within the pens measured, but then we need to have the seasonal variability figured also."

Casey said their small-scale chamber work will be supplemented by collaborative work with Dr. Brock Faulkner, a Texas A&M University research assistant professor in College Station, who has an open-path Fourier transform infrared spectrometer unit.

In Faulkner's work, the spectrometer is placed at one end of the downwind edge of the feed yard and an infrared light source is placed at the other end and it measures the target gas concentrations along the path between the two, Casey said. By running both tests in the same feed yard, they can get a feel for how the results compare.

"We are part of a larger effort to quantify what emissions of greenhouse gas are from feed yards," he said. "We want to understand the variability and circumstances that create the greatest emissions and determine methodologies that identify the right numbers. Then we want to help identify management practices that can keep them at the lowest possible levels."

Dr. Ken Casey | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>