Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great minds think alike

02.04.2014

Study finds pigeons and other animals can place everyday things in categories like humans

Pinecone or pine nut? Friend or foe? Distinguishing between the two requires that we pay special attention to the telltale characteristics of each. And as it turns out, us humans aren't the only ones up to the task.

According to researchers at the University of Iowa, pigeons share our ability to place everyday things in categories. And, like people, they can hone in on visual information that is new or important and dismiss what is not.

"The basic concept at play is selective attention. That is, in a complex world, with its booming, buzzing confusion, we don't attend to all properties of our environment. We attend to those that are novel or relevant," says Edward Wasserman, UI psychology professor and secondary author on the paper, published in the Journal of Experimental Psychology: Animal Learning and Cognition.

Selective attention has traditionally been viewed as unique to humans. But as UI research scientist and lead author of the study Leyre Castro explains, scientists now know that discerning one category from another is vital to survival.

"All animals in the wild need to distinguish what might be food from what might be poison, and, of course be able to single out predators from harmless creatures," she says.

More than that, other creatures seem to follow the same thought process humans do when it comes to making these distinctions. Castro and Wasserman's study reveals that learning about an object's relevant characteristics and using those characteristics to categorize it go hand-in-hand.

When observing pigeons, "We thought they would learn what was relevant (step one) and then learn the appropriate response (step two)," Wasserman explains. But instead, the researchers found that learning and categorization seemed to occur simultaneously in the brain.

To test how, and indeed whether, animals like pigeons use selective attention, Wasserman and Castro presented the birds with a touchscreen containing two sets of four computer-generated images—such as stars, spirals, and bubbles.

The pigeons had to determine what distinguished one set from the other. For example, did one set contain a star while the other contained bubbles?

By monitoring what images the pigeons pecked on the touchscreen, Wasserman and Castro were able to determine what the birds were looking at. Were they pecking at the relevant, distinguishing characteristics of each set—in this case the stars and the bubbles?

The answer was yes, suggesting that pigeons—like humans—use selective attention to place objects in appropriate categories. And according to the researchers, the finding can be extended to other animals like lizards and goldfish.

"Because a pigeon's beak is midway between its eyes, we have a pretty good idea that where it is looking is where it is pecking," Wasserman says. This could be true of any bird or fish or reptile.

"However, we can't assume our findings would hold true in an animal with appendages—such as arms—because their eyes can look somewhere other than where their hand or paw is touching," he explains.

###

The study, "Pigeons' Tracking of Relevant Attributes in Categorization Learning," was published in the April 2 print edition of the Journal of Experimental Psychology: Animal Learning and Cognition. Funding was provided by the UI psychology department.

Amy Mattson | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Cognition animals bubbles characteristics creatures explains eyes goldfish humans pigeons

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>