Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great minds think alike

02.04.2014

Study finds pigeons and other animals can place everyday things in categories like humans

Pinecone or pine nut? Friend or foe? Distinguishing between the two requires that we pay special attention to the telltale characteristics of each. And as it turns out, us humans aren't the only ones up to the task.

According to researchers at the University of Iowa, pigeons share our ability to place everyday things in categories. And, like people, they can hone in on visual information that is new or important and dismiss what is not.

"The basic concept at play is selective attention. That is, in a complex world, with its booming, buzzing confusion, we don't attend to all properties of our environment. We attend to those that are novel or relevant," says Edward Wasserman, UI psychology professor and secondary author on the paper, published in the Journal of Experimental Psychology: Animal Learning and Cognition.

Selective attention has traditionally been viewed as unique to humans. But as UI research scientist and lead author of the study Leyre Castro explains, scientists now know that discerning one category from another is vital to survival.

"All animals in the wild need to distinguish what might be food from what might be poison, and, of course be able to single out predators from harmless creatures," she says.

More than that, other creatures seem to follow the same thought process humans do when it comes to making these distinctions. Castro and Wasserman's study reveals that learning about an object's relevant characteristics and using those characteristics to categorize it go hand-in-hand.

When observing pigeons, "We thought they would learn what was relevant (step one) and then learn the appropriate response (step two)," Wasserman explains. But instead, the researchers found that learning and categorization seemed to occur simultaneously in the brain.

To test how, and indeed whether, animals like pigeons use selective attention, Wasserman and Castro presented the birds with a touchscreen containing two sets of four computer-generated images—such as stars, spirals, and bubbles.

The pigeons had to determine what distinguished one set from the other. For example, did one set contain a star while the other contained bubbles?

By monitoring what images the pigeons pecked on the touchscreen, Wasserman and Castro were able to determine what the birds were looking at. Were they pecking at the relevant, distinguishing characteristics of each set—in this case the stars and the bubbles?

The answer was yes, suggesting that pigeons—like humans—use selective attention to place objects in appropriate categories. And according to the researchers, the finding can be extended to other animals like lizards and goldfish.

"Because a pigeon's beak is midway between its eyes, we have a pretty good idea that where it is looking is where it is pecking," Wasserman says. This could be true of any bird or fish or reptile.

"However, we can't assume our findings would hold true in an animal with appendages—such as arms—because their eyes can look somewhere other than where their hand or paw is touching," he explains.

###

The study, "Pigeons' Tracking of Relevant Attributes in Categorization Learning," was published in the April 2 print edition of the Journal of Experimental Psychology: Animal Learning and Cognition. Funding was provided by the UI psychology department.

Amy Mattson | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Cognition animals bubbles characteristics creatures explains eyes goldfish humans pigeons

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>