Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Lakes evaporation study dispels misconceptions, need for expanded monitoring program

22.01.2014
The recent Arctic blast that gripped much of the nation will likely contribute to a healthy rise in Great Lakes water levels in 2014, new research shows. But the processes responsible for that welcome outcome are not as simple and straightforward as you might think.

Yes, extreme winter cold increases ice cover on the Great Lakes, which in turn reduces evaporation by preventing water vapor from escaping into the air. But this simplistic view of winter ice as a mere "cap" on Great Lakes evaporation is giving way to a more nuanced conception, one that considers the complex interplay among evaporation, ice cover and water temperature at different times of year.

In a report released today by the Great Lakes Integrated Sciences and Assessments Center (GLISA)—a federally funded collaboration between the University of Michigan and Michigan State University — a team of American and Canadian scientists notes that while ice cover affects evaporation, the reverse is true as well: evaporation rates in the autumn help determine the extent of winter ice cover.

High evaporation rates in the fall can nearly offset water-level gains that result from extensive winter ice cover, complicating efforts to forecast Great Lakes water levels, which have declined in most of the lakes since the late 1990s, rebounding somewhat during a wet 2013.

The newfound appreciation for evaporation's varied roles reveals gaps in our current understanding of fundamental environmental processes and highlights the need for sustained funding for the project's Great Lakes evaporation monitoring network, said John Lenters, the study's lead investigator and a senior scientist at Ann Arbor-based LimnoTech, an environmental consulting firm.

The binational group's network of five stations is one of the few sources of direct, year-round observations of Great Lakes evaporation.

"It's our hope that we will soon have the funding and infrastructure in place to maintain—and even expand—the network well into the future," Lenters said. "This will be extremely important for improving Great Lakes water-level forecasting and for understanding the long-term impacts of climate change."

The study by Lenters and his colleagues is the first coordinated effort to study evaporation across the Great Lakes. In addition to Lenters, the research team consists of Christopher Spence of Environment Canada, Peter Blanken of the University of Colorado, John Anderton of Northern Michigan University and Andrew Suyker of the University of Nebraska.

By piecing together the results from several studies, Lenters and his colleagues showed that years with high Great Lakes ice cover require a large amount of heat loss from the lakes in the preceding autumn and early winter to cool the water enough to form ice. And one of the most effective ways for a lake to lose heat is through evaporation, which means that extensive ice cover is actually an indicator of high evaporation rates prior to a high-ice winter, according to co-author Blanken.

Team members used funding from a 2011 GLISA grant to integrate their independent efforts, underway since 2008, to monitor and understand the impacts of climate variability and change on Great Lakes evaporation. The 11-page white paper released today highlights a few of the results.

"No two years are alike when it comes to Great Lakes evaporation, ice cover and water temperatures, but the recent documented changes in the lakes' water balance are aligned with predictions associated with climate change," said Environment Canada's Spence.

"That's why these new measurements over each of the Great Lakes have been so valuable to better understand these seasonal, inter-annual and long-term variations," he said.

The recent cold spell, blamed on an errant polar vortex, provides a striking example of how Great Lakes evaporation sometimes defies expectations.

While examining meteorological data from an island on Lake Superior, Lenters found that evaporation rates during December 2013, a cold month, were about 60 percent higher than they were in December 2011, a much warmer month.

"Most people would find this counterintuitive," Lenters said. "Why would a lake evaporate more rapidly during a colder month? The answer, it turns out, lies within the lake itself."

Relative to the air, December and January water temperatures can be surprisingly warm in deep lakes like Superior. In early January 2014, the lake was 30 to 40 degrees warmer than the overlying air, according to Lenters. That large temperature contrast caused a steep moisture difference which, in turn, led to high evaporation rates, he said.

So what does all this mean for Great Lakes water levels in 2014?

Although the recent cold spell has led to high evaporation rates this winter, the extensive ice cover is likely to stick around longer into the spring than is typical. That may lead to cooler summer water temperatures and a later start to the 2014 Great Lakes evaporation season.

"Together with high spring runoff from this winter's heavy lake-effect snowfall, it would be reasonable to expect a healthy rise in Great Lakes water levels this year," Lenters said.

In addition to funding from GLISA, the investigators received support from the International Upper Great Lakes Study through the International Joint Commission. The co-directors of GLISA are Don Scavia at U-M and Thomas Dietz at Michigan State University.

"A new understanding of the impacts of climate variability on Great Lakes evaporation is emerging as a result of this GLISA-funded project," said Scavia, director of the Graham Sustainability Institute, which oversees the GLISA program at U-M.

"In light of these new findings, continued long-term monitoring of Great Lakes evaporation and related hydrological processes is paramount for understanding and predicting the future impacts of climate variability and change on Great Lakes water levels." "Understanding how lake levels are changing is very important to our region," said Dietz, a professor of environmental science and policy at Michigan State. "This affects shipping, recreation and infrastructure on the lake shore."

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>