Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The more gray matter you have, the more altruistic you are

12.07.2012
The volume of a small brain region influences one’s predisposition for altruistic behavior. Researchers from the University of Zurich show that people who behave more altruistically than others have more gray matter at the junction between the parietal and temporal lobe, thus showing for the first time that there is a connection between brain anatomy, brain activity and altruistic behavior.

Why are some people very selfish and others very altruistic? Previous studies indicated that social categories like gender, income or education can hardly explain differences in altruistic behavior.


The junction (yellow) between the parietal and the temporal lobes, in which the relative proportion of gray matter is significantly positively correlated with the propensity for altruistic behavior. UZH

Recent neuroscience studies have demonstrated that differences in brain structure might be linked to differences in personality traits and abilities. Now, for the first time, a team of researchers from the University of Zurich headed by Ernst Fehr, Director of the Department of Economics, show that there is a connection between brain anatomy and altruistic behavior.

To investigate whether differences in altruistic behavior have neurobiological causes, volunteers were to divide money between themselves and an anonymous other person. The participants always had the option of sacrificing a certain portion of the money for the benefit of the other person. Such a sacrifice can be deemed altruistic because it helps someone else at one’s own expense. The researchers found major differences in this respect: Some participants were almost never willing to sacrifice money to benefit others while others behaved very altruistically.

More gray matter

The aim of the study, however, was to find out why there are such differences. Previous studies had shown that a certain region of the brain – the place where the parietal and temporal lobes meet – is linked to the ability to put oneself in someone else’s shoes in order to understand their thoughts and feelings. Altruism is probably closely related to this ability. Consequently, the researchers suspected that individual differences in this part of the brain might be linked to differences in altruistic behavior. And, according to Yosuke Morishima, a postdoctoral researcher at the Department of Economics at the University of Zurich, they were right: “People who behaved more altruistically also had a higher proportion of gray matter at the junction between the parietal and temporal lobes.”

Differences in brain activity

The participants in the study also displayed marked differences in brain activity while they were deciding how to split up the money. In the case of selfish people, the small brain region behind the ear is already active when the cost of altruistic behavior is very low. In altruistic people, however, this brain region only becomes more active when the cost is very high. The brain region is thus activated especially strongly when people reach the limits of their willingness to behave altruistically. The reason, the researchers suspect, is that this is when there is the greatest need to overcome man’s natural self-centeredness by activating this brain region.
Ernst Fehr adds: “These are exciting results for us. However, one should not jump to the conclusion that altruistic behavior is determined by biological factors alone.” The volume of gray matter is also influenced by social processes. According to Fehr, the findings therefore raise the fascinating question as to whether it is possible to promote the development of brain regions that are important for altruistic behavior through appropriate training or social norms.

The study is a part of the larger research program “Neurochoice”, a project initiated and financed in part by SystemsX.ch

Literature:
Yosuke Morishima, Daniel Schunk, Adrian Bruhin, Christian C. Ruff, and Ernst Fehr. Linking brain structure and activation in the temporoparietal junction to explain the neurobiology of human altruism. Neuron. July 12, 2012.
Contact:

Prof. Dr. Ernst Fehr
Department of Economics
University of Zurich
Tel.: +41 44 634 37 01
Email: ernst.fehr@econ.uzh.ch

Yosuke Morishima, M.D., Ph.D
Department of Economics
University of Zurich
Tel.: +41 44 634 51 69
Email: yosuke.morishima@econ.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>