Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grass, fungus combination affects ecology

16.03.2010
Six-year study examines impacts of fescue and symbiotic fungus

The popular forage and turf grass called tall fescue covers a vast amount of land in the U.S. -- an area that's estimated to be larger than Virginia and Maryland combined -- and a new study by ecologists at Rice University and Indiana University suggests there is more to fescue than meets the eye.

Results of the six-year study, which are available online in the Journal of Applied Ecology, show that a symbiotic fungus living inside fescue can have far-reaching effects on plant, animal and insect communities.

"Competition and environment have traditionally been seen as the driving forces for community dynamics, so it's significant to see that the composition and diversity of a plant community can be affected by changing a few genes in an invisible fungus inside one species of grass," said study co-author Jennifer Rudgers, Rice's Godwin Assistant Professor of Ecology and Evolutionary Biology. "This suggests that cooperative microorganisms should not be overlooked as significant contributors to ecological diversity."

Tall fescue is hearty, low-maintenance and stays green year-round, which makes it a favorite for home lawns, golf courses and highway rights-of-way across the U.S. But fescue, which is native to Europe and North Africa, can also be highly invasive in North America. It can also sicken livestock, thanks to a symbiotic fungus called Neotyphodium coenophialum. The fungus and fescue have a mutually beneficial relationship. The fungus lives inside the plant, where it gets shelter and food, and in return it laces the plant's leaves with toxic alkaloids that are a turnoff to some plant-eating animals.

In 2002, Rudgers and Indiana University ecologist Keith Clay, a study co-author, selected 42 grassland plots, each about 1,000 square feet, at the Indiana University Research and Teaching Preserve north of Bloomington, Ind. The researchers selected two varieties of fescue called Georgia-5 and Jesup, and two varieties of the fungus, called KY-31 and AR-542. KY-31 is a common variety that produces alkaloids that are toxic to mammals, and AR-542 naturally lacks these alkaloids. Additionally, some plots were planted with grass and no fungus.

Over the next six years, the team returned to the plots several times. The investigation was painstaking. In randomly selected areas, the researchers counted individual flowers, cataloged the number and species of every plant and even counted the number of stems of grass that had been gnawed by plant-eating voles.

The investigation offered specific results for conservation managers: Jesup with either fungus works best for maintaining a fescue monoculture; and if a symbiotic fungus is desirable, the combination of Georgia-5 and AR-542 supports maximum plant diversity and minimal invasiveness.

The study also suggested that the ecological effects of plant-microbe symbiosis aren't easy to predict. For example, the researchers found that voles were less likely to eat fescue that contained either fungus, including the AR-542 variety, which lacks mammal-toxic alkaloids.

"That indicates that plant-microbe symbioses have complex ecological effects," said Clay, professor of biology and director of the Indiana University Research and Teaching Preserve. "It signals the need for more investigations of the long-term effects of cooperative symbiosis."

Indiana University undergraduate Susan Fischer also co-authored the study. The research was sponsored by the National Science Foundation and the Indiana University Research and Teaching Preserve.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>