Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Study Confirms 40-Year-Old Physics Prediction

21.05.2013
First Direct Proof of Hofstadter Butterfly Fractal Observed in Moiré Superlattices

Graphene Study Confirms 40-Year-Old Physics Prediction


By James Hedberg for Columbia University.

Artistic image illustration of butterfly departing from graphene moiré pattern formed on the top of atomically thin boron nitride substrate. Electron energy in such graphene moiré structure exhibits butterfly like self-recursive fractal quantum spectrum.

A team of researchers from Columbia University, City University of New York, the University of Central Florida (UCF), and Tohoku University and the National Institute for Materials Science in Japan, have directly observed a rare quantum effect that produces a repeating butterfly-shaped energy spectrum, confirming the longstanding prediction of this quantum fractal energy structure called Hofstadter’s butterfly. The study, which focused on moiré-patterned graphene, is published in the May 15, 2013, Advance Online Publication (AOP) of Nature.

First predicted by American physicist Douglas Hofstadter in 1976, the Hofstadter butterfly emerges when electrons are confined to a two-dimensional sheet, and subjected to both a periodic potential energy (akin to a marble rolling on a sheet the shape of an egg carton) and a strong magnetic field. The Hofstadter butterfly is a fractal pattern—it contains shapes that repeat on smaller and smaller size scales. Fractals are common in classical systems such as fluid mechanics, but rare in the quantum mechanical world. In fact, the Hofstadter butterfly is one of the first quantum fractals theoretically discovered in physics but, until now, there has been no direct experimental proof of this spectrum.

Previous efforts to study the Hofstadter butterfly, which has become a standard “textbook” theoretical result, attempted to use artificially created structures to achieve the required periodic potential energy. These studies produced strong evidence for the Hofstadter spectrum but were significantly hampered by the difficulty in creating structures that were both small and perfect enough to allow detailed study.

In order to create a periodic potential with a near-ideal length scale and also with a low degree of disorder, the team used an effect called a moiré pattern that arises naturally when atomically thin graphene is placed on an atomically flat boron nitride (BN) substrate, which has the same honeycomb atomic lattice structure as graphene but with a slightly longer atomic bond length. This work builds on years of experience with both graphene and BN at Columbia. The techniques for fabricating these structures were developed by the Columbia team in 2010 to create higher-performing transistors, and have also proven to be invaluable in opening up new areas of basic physics such as this study.

To map the graphene energy spectrum, the team then measured the electronic conductivity of the samples at very low temperatures in extremely strong magnetic fields up to 35 Tesla (consuming 35 megawatts of power) at the National High Magnetic Field Laboratory. The measurements show the predicted self-similar patterns, providing the best evidence to date for the Hofstadter butterfly, and providing the first direct evidence for its fractal nature.

“Now we see that our study of moiré-patterned graphene provides a new model system to explore the role of fractal structure in quantum systems,” says Cory Dean, the first author of the paper who is now an assistant professor at The City College of New York. “This is a huge leap forward—our observation that interplays between competing length scales result in emergent complexity provides the framework for a new direction in materials design. And such understanding will help us develop novel electronic devices employing quantum engineered nanostructures.”

“The opportunity to confirm a 40-year-old prediction in physics that lies at the core of most of our understanding of low-dimensional material systems is rare, and tremendously exciting,” adds Dean. “Our confirmation of this fractal structure opens the door for new studies of the interplay between complexity at the atomic level in physical systems and the emergence of new phenomenon arising from complexity.”

The work from Columbia University resulted from collaborations across several disciplines including experimental groups in the departments of physics (Philip Kim), mechanical engineering (James Hone), and electrical engineering (Kenneth Shepard) in the new Northwest Corner building, using the facilities in the CEPSR (Columbia’s Schapiro Center for Engineering and Physical Science Research) microfabrication center. Similar results are concurrently being reported from groups led by Konstantin Novoselov and Andre Geim at the University of Manchester, and Pablo Jarillo-Herrero and Raymond Ashoori at MIT.

Holly Evarts | Newswise
Further information:
http://www.columbia.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>