Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene Study Confirms 40-Year-Old Physics Prediction

First Direct Proof of Hofstadter Butterfly Fractal Observed in Moiré Superlattices

Graphene Study Confirms 40-Year-Old Physics Prediction

By James Hedberg for Columbia University.

Artistic image illustration of butterfly departing from graphene moiré pattern formed on the top of atomically thin boron nitride substrate. Electron energy in such graphene moiré structure exhibits butterfly like self-recursive fractal quantum spectrum.

A team of researchers from Columbia University, City University of New York, the University of Central Florida (UCF), and Tohoku University and the National Institute for Materials Science in Japan, have directly observed a rare quantum effect that produces a repeating butterfly-shaped energy spectrum, confirming the longstanding prediction of this quantum fractal energy structure called Hofstadter’s butterfly. The study, which focused on moiré-patterned graphene, is published in the May 15, 2013, Advance Online Publication (AOP) of Nature.

First predicted by American physicist Douglas Hofstadter in 1976, the Hofstadter butterfly emerges when electrons are confined to a two-dimensional sheet, and subjected to both a periodic potential energy (akin to a marble rolling on a sheet the shape of an egg carton) and a strong magnetic field. The Hofstadter butterfly is a fractal pattern—it contains shapes that repeat on smaller and smaller size scales. Fractals are common in classical systems such as fluid mechanics, but rare in the quantum mechanical world. In fact, the Hofstadter butterfly is one of the first quantum fractals theoretically discovered in physics but, until now, there has been no direct experimental proof of this spectrum.

Previous efforts to study the Hofstadter butterfly, which has become a standard “textbook” theoretical result, attempted to use artificially created structures to achieve the required periodic potential energy. These studies produced strong evidence for the Hofstadter spectrum but were significantly hampered by the difficulty in creating structures that were both small and perfect enough to allow detailed study.

In order to create a periodic potential with a near-ideal length scale and also with a low degree of disorder, the team used an effect called a moiré pattern that arises naturally when atomically thin graphene is placed on an atomically flat boron nitride (BN) substrate, which has the same honeycomb atomic lattice structure as graphene but with a slightly longer atomic bond length. This work builds on years of experience with both graphene and BN at Columbia. The techniques for fabricating these structures were developed by the Columbia team in 2010 to create higher-performing transistors, and have also proven to be invaluable in opening up new areas of basic physics such as this study.

To map the graphene energy spectrum, the team then measured the electronic conductivity of the samples at very low temperatures in extremely strong magnetic fields up to 35 Tesla (consuming 35 megawatts of power) at the National High Magnetic Field Laboratory. The measurements show the predicted self-similar patterns, providing the best evidence to date for the Hofstadter butterfly, and providing the first direct evidence for its fractal nature.

“Now we see that our study of moiré-patterned graphene provides a new model system to explore the role of fractal structure in quantum systems,” says Cory Dean, the first author of the paper who is now an assistant professor at The City College of New York. “This is a huge leap forward—our observation that interplays between competing length scales result in emergent complexity provides the framework for a new direction in materials design. And such understanding will help us develop novel electronic devices employing quantum engineered nanostructures.”

“The opportunity to confirm a 40-year-old prediction in physics that lies at the core of most of our understanding of low-dimensional material systems is rare, and tremendously exciting,” adds Dean. “Our confirmation of this fractal structure opens the door for new studies of the interplay between complexity at the atomic level in physical systems and the emergence of new phenomenon arising from complexity.”

The work from Columbia University resulted from collaborations across several disciplines including experimental groups in the departments of physics (Philip Kim), mechanical engineering (James Hone), and electrical engineering (Kenneth Shepard) in the new Northwest Corner building, using the facilities in the CEPSR (Columbia’s Schapiro Center for Engineering and Physical Science Research) microfabrication center. Similar results are concurrently being reported from groups led by Konstantin Novoselov and Andre Geim at the University of Manchester, and Pablo Jarillo-Herrero and Raymond Ashoori at MIT.

Holly Evarts | Newswise
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>