Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Foam Detects Explosives, Emissions Better Than Today’s Gas Sensors

29.11.2011
Rensselaer Polytechnic Institute Engineering Researchers Overcome Decade-Old Hurdle Hampering Development of Nanostructure-based Gas Sensors

A new study from Rensselaer Polytechnic Institute demonstrates how graphene foam can outperform leading commercial gas sensors in detecting potentially dangerous and explosive chemicals. The discovery opens the door for a new generation of gas sensors to be used by bomb squads, law enforcement officials, defense organizations, and in various industrial settings.

The new sensor successfully and repeatedly measured ammonia (NH3) and nitrogen dioxide (NO2) at concentrations as small as 20 parts-per-million. Made from continuous graphene nanosheets that grow into a foam-like structure about the size of a postage stamp and thickness of felt, the sensor is flexible, rugged, and finally overcomes the shortcomings that have prevented nanostructure-based gas detectors from reaching the marketplace.

Results of the study were published today in the journal Scientific Reports, published by Nature Publishing Group. See the paper, titled “High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network,” at: http://www.nature.com/srep/2011/111123/ srep00166/full/srep00166.html

“We are very excited about this new discovery, which we think could lead to new commercial gas sensors,” said Rensselaer Engineering Professor Nikhil Koratkar, who co-led the study along with Professor Hui-Ming Cheng at the Shenyang National Laboratory for Materials Science at the Chinese Academy of Sciences. “So far, the sensors have shown to be significantly more sensitive at detecting ammonia and nitrogen dioxide at room temperature than the commercial gas detectors on the market today.”

Watch a short video of Koratkar talking about this research at: http://youtu.be/RHVW2kCr3Iw

Over the past decade researchers have shown that individual nanostructures are extremely sensitive to chemicals and different gases. To build and operate a device using an individual nanostructure for gas detection, however, has proven to be far too complex, expensive, and unreliable to be commercially viable, Koratkar said. Such an endeavor would involve creating and manipulating the position of the individual nanostructure, locating it using microscopy, using lithography to apply gold contacts, followed by other slow, costly steps. Embedded within a handheld device, such a single nanostructure can be easily damaged and rendered inoperable. Additionally, it can be challenging to “clean” the detected gas from the single nanostructure.

The new postage stamp-sized structure developed by Koratkar has all of the same attractive properties as an individual nanostructure, but is much easier to work with because of its large, macroscale size. Koratkar’s collaborators at the Chinese Academy of Sciences grew graphene on a structure of nickel foam. After removing the nickel foam, what’s left is a large, free-standing network of foam-like graphene. Essentially a single layer of the graphite found commonly in our pencils or the charcoal we burn on our barbeques, graphene is an atom-thick sheet of carbon atoms arranged like a nanoscale chicken-wire fence. The walls of the foam-like graphene sensor are comprised of continuous graphene sheets without any physical breaks or interfaces between the sheets.

Koratkar and his students developed the idea to use this graphene foam structure as a gas detector. As a result of exposing the graphene foam to air contaminated with trace amounts of ammonia or nitrogen dioxide, the researchers found that the gas particles stuck, or adsorbed, to the foam’s surface. This change in surface chemistry has a distinct impact upon the electrical resistance of the graphene. Measuring this change in resistance is the mechanism by which the sensor can detect different gases.

Additionally, the graphene foam gas detector is very convenient to clean. By applying a ~100 milliampere current through the graphene structure, Koratkar’s team was able to heat the graphene foam enough to unattach, or desorb, all of the adsorbed gas particles. This cleaning mechanism has no impact on the graphene foam’s ability to detect gases, which means the detection process is fully reversible and a device based on this new technology would be low power—no need for external heaters to clean the foam—and reusable.

Koratkar chose ammonia as a test gas to demonstrate the proof-of-concept for this new detector. Ammonium nitrate is present in many explosives and is known to gradually decompose and release trace amounts of ammonia. As a result, ammonia detectors are often used to test for the presence of an explosive. A toxic gas, ammonia also is used in a variety of industrial and medical processes, for which detectors are necessary to monitor for leaks.

Results of the study show the new graphene foam structure detected ammonia at 1,000 parts-per-million in 5 to 10 minutes at room temperature and atmospheric pressure. The accompanying change in the graphene’s electrical resistance was about 30 percent. This compared favorably to commercially available conducting polymer sensors, which undergo a 30 percent resistance change in 5 to 10 minutes when exposed to 10,000 parts-per-million of ammonia. In the same time frame and with the same change in resistance, the graphene foam detector was 10 times as sensitive. The graphene foam detector’s sensitivity is effective down to 20 parts-per-million, much lower than the commercially available devices. Additionally, many of the commercially available devices require high power consumption since they provide adequate sensitivity only at high temperatures, whereas the graphene foam detector operates at room temperature.

Koratkar’s team used nitrogen dioxide as the second test gas. Different explosives including nitrocellulose gradually degrade, and are known to produce nitrogen dioxide gas as a byproduct. As a result, nitrogen dioxide also is used as a marker when testing for explosives. Additionally, nitrogen dioxide is a common pollutant found in combustion and auto emissions. Many different environmental monitoring systems feature real-time nitrogen dioxide detection.

The new graphene foam sensor detected nitrogen dioxide at 100 parts-per-million by a 10 percent resistance change in 5 to 10 minutes at room temperature and atmospheric pressure. It showed to be 10 times more sensitive than commercial conducting polymer sensors, which typically detect nitrogen dioxide at 1,000 part-per-million in the same time and with the same resistance chance at room temperature. Other nitrogen dioxide detectors available today require high power consumption and high temperatures to provide adequate sensitivity. The graphene foam sensor can detect nitrogen dioxide down to 20 parts-per-million at room temperature.

“We see this as the first practical nanostructure-based gas detector that’s viable for commercialization,” said Koratkar, a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer. “Our results show the graphene foam is able to detect ammonia and nitrogen dioxide at a concentration that is an order of magnitude lower than commercial gas detectors on the market today.”

The graphene foam can be engineered to detect many different gases beyond ammonia and nitrogen dioxide, he said.

Studies have shown the electrical conductivity of an individual nanotube, nanowire, or graphene sheet is acutely sensitive to gas adsorbtion. But the small size of individual nanostructures made it costly and challenging to develop into a device, plus the structures are delicate and often don’t yield consistent results.

The new graphene foam gas sensor overcomes these challenges. It is easy to handle and manipulate because of its large, macroscale size. The sensor also is flexible, rugged, and robust enough to handle wear and tear inside of a device. Plus it is fully reversible, and the results it provides are consistent and repeatable. Most important, the graphene foam is highly sensitive, thanks to its 3-D, porous structure that allows gases to easily adsorb to its huge surface area. Despite its large size, the graphene foam structure essentially functions as a single nanostructure. There are no breaks in the graphene network, which means there are no interfaces to overcome, and electrons flow freely with little resistance. This adds to the foam’s sensitivity to gases.

“In a sense we have overcome the Achilles’ heel of nanotechnology for chemical sensing,” Koratkar said. “A single nanostructure works great, but doesn’t mean much when applied in a real device in the real world. When you try to scale it up to macroscale proportions, the interfaces defeats what you’re trying to accomplish, as the nanostructure’s properties are dominated by interfaces. Now we’re able to scale up graphene in a way that the interfaces are not present. This allows us to take advantage of the intrinsic properties of the nanostructure, yet work with a macroscopic structure that gives us repeatability, reliability, and robustness, but shows similar sensitivity to gas adsorbtion as a single nanostructure.”

Along with Koratkar, co-authors of the paper are: Rensselaer graduate students Fazel Yavari and Abhay Varghese Thomas; along with professors W.C. Ren, H.M. Cheng and graduate student Z.P. Chen of the Shenyang National Laboratory for Materials Science at the Chinese Academy of Sciences.

This research was supported in part by the Advanced Energy Consortium (AEC), the National Science Foundation of China, and the Chinese Academy of Sciences.

For more information on Koratkar’s graphene research at Rensselaer, visit:

New Graphene Discovery Boosts Oil Exploration Efforts, Could Enable Self-Powered Microsensors
http://news.rpi.edu/update.do?artcenterkey=2900
Water Could Hold Answer to Graphene Nanoelectronics
http://news.rpi.edu/update.do?artcenterkey=2783
Graphene Outperforms Carbon Nanotubes for Creating Stronger Materials
http://news.rpi.edu/update.do?artcenterkey=2715
Student Innovator Tackles Challenge of Hydrogen Storage Using Graphene
http://news.rpi.edu/update.do?artcenterkey=2690
Published November 23, 2011 Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu
http://news.rpi.edu/update.do?artcenterkey=2950

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>