Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global Warming Trends Contribute to the Spread of West Nile Virus to New Regions in Europe

The Israeli research team was chosen by the European Centre for Disease Prevention and Control, a part of the European Union, to lead this research

Global warming trends have a significant influence on the spread of West Nile Virus to new regions in Europe and neighboring countries, where the disease wasn’t present before, according to a new study by the University of Haifa.

The study was commissioned by the European Centre for Disease Prevention and Control (ECDC) in Stockholm, which belongs to the European Union. The study found that rising temperatures have a more considerable contribution than humidity, to the spread of the disease, while the effect of rain was inconclusive.

“These results are an additional testament that global warming contributes to the outbreak of mosquito-borne and other temperature-sensitive vector-borne diseases. The indications to this are piling up in different parts around the globe”, says Dr. Shlomit Paz, who led this research. These findings were recently published in the online scientific journal, “Plos One”.

West Nile Virus is spread by mosquitoes that repeatedly bite infected birds. The potential threat the infection poses to man is the possibility of causing irreversible brain damage or even death through encephalitis or meningitis. The elderly and people with weak immune systems are most susceptible.

The research, conducted by a team from the University of Haifa led by Dr. Shlomit Paz, also included Dr. Dan Malkinson and Gil Tzioni from the Department of Geography and Environmental Studies, along with Prof. Manfred Green, the head of the School of Public Health, and in collaboration with Prof. Jan Semenza from the ECDC. The Israeli research team was chosen by the EU’s ECDC, after winning an international tender.

The current study examined the link between daily temperature, humidity and precipitation data and West Nile incidence in Europe and neighboring countries. “We used statistical tools and found that as a result of heat waves, a dramatic increase in the number of cases resulted from increased activity of the virus and a growth of the mosquito population”, claims Paz. According to her, these results were seen in various countries.

Paz says these results have a significant importance considering the rising temperatures seen in Europe in recent years. She is now conducting a continuing study on the subject for the ECDC and the French research center, CIRAD. “In our new research our aim is to look for additional potential influences on the spread of the disease, such as the location of mosquito populations or various human aspects”, she says.

Paz hopes their findings will make it possible to develop a model for better predicting the future spread of the virus in Europe, “Such a model will allow the ECDC to guide the different European countries on how to better prepare in advance for West Nile outbreaks and perhaps will even allow restraint of such outbreaks in the future”.

For more information, contact Polina Petruhin at +972-4-8288722, +972-54-3933092 or email to .

Polina Petruhin | University of Haifa
Further information: .

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>