Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global rainfall satellites require massive overhaul

13.02.2015

Circling hundreds of miles above Earth, weather satellites are working round-the-clock to provide rainfall data that are key to a complex system of global flood prediction.

A new Cornell University study warns that the existing system of space-based rainfall observation satellites requires a serious overhaul. Particularly in many developing countries, satellite-based flood prediction has weak spots, which could lead to major flooding that catches people by surprise. What's more, four of the 10 dedicated rainfall satellites are past their warranty, further increasing risk of disaster.

The study, published online Feb. 11 in Environmental Research Letters, is led by Patrick Reed, professor of civil and environmental engineering, in collaboration with researchers at Princeton University and the Aerospace Corporation.

"It's important for us to start thinking as a globe about a serious discussion on flood adaptation, and aiding affected populations to reduce their risks," Reed said. "We want to give people time to evacuate, to make better choices, and to understand their conditions."

In their study, Reed and colleagues showed that even assuming all 10 satellites are working well and perfectly coordinated, rainfall data still has many deficits across the globe, including in areas vulnerable to flood risk. Removing the four satellites that have surpassed their design life dramatically increases these deficits, possibly leading to high-intensity flood events to go unobserved.

The study was not all bad news. Reed and colleagues also demonstrated that replacing as few as two of the four satellites past their design life could help close these gaps considerably.

In the paper, the researchers call for increased international coordination of satellite replacement. The system now is not very well coordinated; satellite administration varies among the National Oceanic and Atmospheric Administration, the Department of Defense, the Japan Aerospace Exploration Agency, the European Space Agency, and others, and all have their own specific mission requirements, Reed said.

Broader collaboration is needed to fix the data deficits that are only expected to get worse. Concerns about a dramatic loss of satellite capabilities critical to many areas of Earth sciences have been widely reported since the National Research Council sounded the alarm in 2007, and again in 2012. Reed's paper is an attempt to quantify the specific consequences of this alarm with respect to rainfall and global flooding.

###

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Melissa Osgood
mmo59@cornell.edu
607-255-2059

 @cornell

http://pressoffice.cornell.edu 

Melissa Osgood | EurekAlert!

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>