Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global rainfall satellites require massive overhaul

13.02.2015

Circling hundreds of miles above Earth, weather satellites are working round-the-clock to provide rainfall data that are key to a complex system of global flood prediction.

A new Cornell University study warns that the existing system of space-based rainfall observation satellites requires a serious overhaul. Particularly in many developing countries, satellite-based flood prediction has weak spots, which could lead to major flooding that catches people by surprise. What's more, four of the 10 dedicated rainfall satellites are past their warranty, further increasing risk of disaster.

The study, published online Feb. 11 in Environmental Research Letters, is led by Patrick Reed, professor of civil and environmental engineering, in collaboration with researchers at Princeton University and the Aerospace Corporation.

"It's important for us to start thinking as a globe about a serious discussion on flood adaptation, and aiding affected populations to reduce their risks," Reed said. "We want to give people time to evacuate, to make better choices, and to understand their conditions."

In their study, Reed and colleagues showed that even assuming all 10 satellites are working well and perfectly coordinated, rainfall data still has many deficits across the globe, including in areas vulnerable to flood risk. Removing the four satellites that have surpassed their design life dramatically increases these deficits, possibly leading to high-intensity flood events to go unobserved.

The study was not all bad news. Reed and colleagues also demonstrated that replacing as few as two of the four satellites past their design life could help close these gaps considerably.

In the paper, the researchers call for increased international coordination of satellite replacement. The system now is not very well coordinated; satellite administration varies among the National Oceanic and Atmospheric Administration, the Department of Defense, the Japan Aerospace Exploration Agency, the European Space Agency, and others, and all have their own specific mission requirements, Reed said.

Broader collaboration is needed to fix the data deficits that are only expected to get worse. Concerns about a dramatic loss of satellite capabilities critical to many areas of Earth sciences have been widely reported since the National Research Council sounded the alarm in 2007, and again in 2012. Reed's paper is an attempt to quantify the specific consequences of this alarm with respect to rainfall and global flooding.

###

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Melissa Osgood
mmo59@cornell.edu
607-255-2059

 @cornell

http://pressoffice.cornell.edu 

Melissa Osgood | EurekAlert!

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>