Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global business teams need time to talk, not just e-mail

21.01.2010
Globally distributed teams cannot rely entirely on technology to overcome time and space barriers; they still need to talk. And that probably means working some overlapping hours, says a Duke University management professor.

Jonathon Cummings, associate professor of management and director of the Center for IT & Media in Duke's Fuqua School of Business, developed these recommendations based on a multi-year study of 108 project teams at Intel. Along with J. Alberto Espinosa of American University and Cynthia Pickering of Intel, Cummings assessed the effectiveness of various technologies in helping Intel teams overcome the challenges of different time zones and locations.

"Although technology can tremendously improve productivity, the Intel experience demonstrates that live communication made possible by overlapping work hours is still critical for a distributed team's success," Cummings said.

The 675 Intel employees included in the study worked in 53 locations in 22 countries. They completed an online survey about their project teams, reporting how closely they worked with each team member, the frequency with which they communicated with team members using different technologies (including email, telephone, instant messaging and web conferencing), and the extent to which their work suffered from "coordination delay," or time lost while waiting for responses or information from another group member.

Teams whose work hours did not overlap at all experienced the most coordination delay, despite the use of email and other technologies that do not require live communication.

"While it may seem that email is a great way to keep projects moving around the clock, none of the current communications technologies was effective in preventing delays when teammates did not share overlapping work hours," Cummings said.

"The engineers need to work together to talk through problems," one Intel employee explained. "So, when there are significant time differences, they just can't make good solid progress without being able to talk."

"This is not to say that technologies aren't important to corporate productivity," another engineer said. "Email and other tools were helpful in reducing delay for teams with overlapping work hours, but not having shared work hours proves to be a significant challenge to teams' efficiency."

Cummings, Espinosa and Pickering recommend that managers take steps to reduce the impact of non-overlapping work hours on teams. One way to do this is by shifting schedules so team members in one or both locations work non-standard hours, allowing them one or two hours of overlap with other team members. Another approach is to divide project duties between team locations so that tasks requiring frequent interaction are handled by team members with overlapping hours.

"Modern technologies have made so many forms of collaboration possible, it's sometimes easy for companies to forget how important direct communication can be to accomplishing a goal," another study participant said.

The team's work, which was funded by grants from the National Science Foundation and Intel IT Research, appears in the peer-reviewed journal Information Systems Research. [http://isr.journal.informs.org/cgi/reprint/20/3/420]

Laura Brinn | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>