Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global business teams need time to talk, not just e-mail

Globally distributed teams cannot rely entirely on technology to overcome time and space barriers; they still need to talk. And that probably means working some overlapping hours, says a Duke University management professor.

Jonathon Cummings, associate professor of management and director of the Center for IT & Media in Duke's Fuqua School of Business, developed these recommendations based on a multi-year study of 108 project teams at Intel. Along with J. Alberto Espinosa of American University and Cynthia Pickering of Intel, Cummings assessed the effectiveness of various technologies in helping Intel teams overcome the challenges of different time zones and locations.

"Although technology can tremendously improve productivity, the Intel experience demonstrates that live communication made possible by overlapping work hours is still critical for a distributed team's success," Cummings said.

The 675 Intel employees included in the study worked in 53 locations in 22 countries. They completed an online survey about their project teams, reporting how closely they worked with each team member, the frequency with which they communicated with team members using different technologies (including email, telephone, instant messaging and web conferencing), and the extent to which their work suffered from "coordination delay," or time lost while waiting for responses or information from another group member.

Teams whose work hours did not overlap at all experienced the most coordination delay, despite the use of email and other technologies that do not require live communication.

"While it may seem that email is a great way to keep projects moving around the clock, none of the current communications technologies was effective in preventing delays when teammates did not share overlapping work hours," Cummings said.

"The engineers need to work together to talk through problems," one Intel employee explained. "So, when there are significant time differences, they just can't make good solid progress without being able to talk."

"This is not to say that technologies aren't important to corporate productivity," another engineer said. "Email and other tools were helpful in reducing delay for teams with overlapping work hours, but not having shared work hours proves to be a significant challenge to teams' efficiency."

Cummings, Espinosa and Pickering recommend that managers take steps to reduce the impact of non-overlapping work hours on teams. One way to do this is by shifting schedules so team members in one or both locations work non-standard hours, allowing them one or two hours of overlap with other team members. Another approach is to divide project duties between team locations so that tasks requiring frequent interaction are handled by team members with overlapping hours.

"Modern technologies have made so many forms of collaboration possible, it's sometimes easy for companies to forget how important direct communication can be to accomplishing a goal," another study participant said.

The team's work, which was funded by grants from the National Science Foundation and Intel IT Research, appears in the peer-reviewed journal Information Systems Research. []

Laura Brinn | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>