Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving children the power to be scientists

10.03.2011
Children who are taught how to think and act like scientists develop a clearer understanding of the subject, a study has shown.

The research project led by The University of Nottingham and The Open University has shown that school children who took the lead in investigating science topics of interest to them gained an understanding of good scientific practice.

The study shows that this method of ‘personal inquiry’ could be used to help children develop the skills needed to weigh up misinformation in the media, understand the impact of science and technology on everyday life and help them to make better personal decisions on issues including diet, health and their own effect on the environment.

Click here for full story The three-year project involved providing pupils aged 11 to 14 at Hadden Park High School in Bilborough, Nottingham, and Oakgrove School in Milton Keynes with a new computer toolkit named nQuire, now available as a free download for teachers and schools.

Running on both desktop PCs and handheld notebook-style devices, the software is a high-tech twist on the traditional lesson plan — guiding the pupils through devising and planning scientific experiments, collecting and analysing data and discussing the results.

The pupils were given wide themes for their studies but were asked to decide on more specific topics that were of interest to them, including heart rate and fitness, micro climates, healthy eating, sustainability and the effect of noise pollution on birds.

The flexible nature of the toolkit meant that children could become “science investigators”, starting an inquiry in the classroom then collecting data in the playground, at a local nature reserve, or even at home, then sharing and analysing their findings back in class.

Professor Mike Sharples, who led the project at Nottingham, said: “Mobile devices such as smartphones and netbooks are sophisticated scientific instruments, with built-in cameras, voice recorders, and location sensors. The children quickly learned how to use the nQuire toolkit to follow investigations.

“The results from the trials we conducted showed a positive effect on learning outcomes, a maintained enjoyment of science lessons and a small but genuine improvement in pupils’ understanding of the scientific process.

“Science can be a hard sell in terms of persuading young people to consider it as an option for further education or as a career, particularly those from socially-disadvantaged backgrounds. However, it shapes the world in which we live and it is incredibly important that people develop the skills necessary to navigate the huge amount of ‘bad science’ and misinformation which is propagated in the media. Our results show that the personal inquiry learning process can take pupils in the right direction.”

Professor Eileen Scanlon, Associate Director (Research & Scholarship), who led the project at The Open University, said: “We wanted to examine whether we could effectively use technology and the process of investigation — or ‘personal inquiry’ — to get pupils to start thinking like scientists.

“The tool this project has produced enables teachers to construct the kind of support pupils need to really engage with a subject area. Using mobile devices gave the pupils support wherever they were, which is an important element of learning. Teaching doesn’t have to be confined to the classroom and in fact, as our research shows, can be much more effective when it’s allowed to extend beyond the typical learning environment. Our focus at the OU has been on support for the geography elements of the curriculum, so it has been particularly important for us to encourage pupils to investigate, and engage with, their local environment.”

The trials showed that after using nQuire, the pupils were able to better grasp the principles underpinning sound scientific practice and whether decisions made during the course of their inquires could threaten the validity of their investigations.

The project has been supported by ScienceScope, a company that develops sensing and data logging equipment, and funded with £1.2 million from the joint Economic and Social Research Council (ESRC) and the Engineering and Physical Sciences Research Council (EPSRC) Technology Enhanced Learning Research Programme.

The nQuire software is now available to teachers and schools as an Open Source application, available for free download at www.nquire.org.uk and can by run on a Windows, Macintosh or Linux PC, on mobile device web browsers such as the Apple iPad or can be downloaded to a USB data stick to allow it to be run from the stick rather than installed as software on a computer.

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘Europe’s greenest university’ in the UI GreenMetric World University Ranking, a league table of the world’s most environmentally-friendly higher education institutions, which ranked Nottingham second in the world overall.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

Story credits
More information is available from Professor Mike Sharples on +44 (0)115 951 3716, mike.sharples@nottingham.ac.uk

Emma Thorne - Media Relations Manager
Email: emma.thorne@nottingham.ac.uk

Phone: +44 (0)115 951 5793

Location: King's Meadow Campus

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>