Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving children the power to be scientists

10.03.2011
Children who are taught how to think and act like scientists develop a clearer understanding of the subject, a study has shown.

The research project led by The University of Nottingham and The Open University has shown that school children who took the lead in investigating science topics of interest to them gained an understanding of good scientific practice.

The study shows that this method of ‘personal inquiry’ could be used to help children develop the skills needed to weigh up misinformation in the media, understand the impact of science and technology on everyday life and help them to make better personal decisions on issues including diet, health and their own effect on the environment.

Click here for full story The three-year project involved providing pupils aged 11 to 14 at Hadden Park High School in Bilborough, Nottingham, and Oakgrove School in Milton Keynes with a new computer toolkit named nQuire, now available as a free download for teachers and schools.

Running on both desktop PCs and handheld notebook-style devices, the software is a high-tech twist on the traditional lesson plan — guiding the pupils through devising and planning scientific experiments, collecting and analysing data and discussing the results.

The pupils were given wide themes for their studies but were asked to decide on more specific topics that were of interest to them, including heart rate and fitness, micro climates, healthy eating, sustainability and the effect of noise pollution on birds.

The flexible nature of the toolkit meant that children could become “science investigators”, starting an inquiry in the classroom then collecting data in the playground, at a local nature reserve, or even at home, then sharing and analysing their findings back in class.

Professor Mike Sharples, who led the project at Nottingham, said: “Mobile devices such as smartphones and netbooks are sophisticated scientific instruments, with built-in cameras, voice recorders, and location sensors. The children quickly learned how to use the nQuire toolkit to follow investigations.

“The results from the trials we conducted showed a positive effect on learning outcomes, a maintained enjoyment of science lessons and a small but genuine improvement in pupils’ understanding of the scientific process.

“Science can be a hard sell in terms of persuading young people to consider it as an option for further education or as a career, particularly those from socially-disadvantaged backgrounds. However, it shapes the world in which we live and it is incredibly important that people develop the skills necessary to navigate the huge amount of ‘bad science’ and misinformation which is propagated in the media. Our results show that the personal inquiry learning process can take pupils in the right direction.”

Professor Eileen Scanlon, Associate Director (Research & Scholarship), who led the project at The Open University, said: “We wanted to examine whether we could effectively use technology and the process of investigation — or ‘personal inquiry’ — to get pupils to start thinking like scientists.

“The tool this project has produced enables teachers to construct the kind of support pupils need to really engage with a subject area. Using mobile devices gave the pupils support wherever they were, which is an important element of learning. Teaching doesn’t have to be confined to the classroom and in fact, as our research shows, can be much more effective when it’s allowed to extend beyond the typical learning environment. Our focus at the OU has been on support for the geography elements of the curriculum, so it has been particularly important for us to encourage pupils to investigate, and engage with, their local environment.”

The trials showed that after using nQuire, the pupils were able to better grasp the principles underpinning sound scientific practice and whether decisions made during the course of their inquires could threaten the validity of their investigations.

The project has been supported by ScienceScope, a company that develops sensing and data logging equipment, and funded with £1.2 million from the joint Economic and Social Research Council (ESRC) and the Engineering and Physical Sciences Research Council (EPSRC) Technology Enhanced Learning Research Programme.

The nQuire software is now available to teachers and schools as an Open Source application, available for free download at www.nquire.org.uk and can by run on a Windows, Macintosh or Linux PC, on mobile device web browsers such as the Apple iPad or can be downloaded to a USB data stick to allow it to be run from the stick rather than installed as software on a computer.

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘Europe’s greenest university’ in the UI GreenMetric World University Ranking, a league table of the world’s most environmentally-friendly higher education institutions, which ranked Nottingham second in the world overall.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

Story credits
More information is available from Professor Mike Sharples on +44 (0)115 951 3716, mike.sharples@nottingham.ac.uk

Emma Thorne - Media Relations Manager
Email: emma.thorne@nottingham.ac.uk

Phone: +44 (0)115 951 5793

Location: King's Meadow Campus

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>