Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ginseng just got better -- not as bitter

07.12.2010
University of Illinois scientists have learned to mask the bitterness of ginseng, a common ingredient of energy drinks.

"Consumers like to see ginseng on a product's ingredient list because studies show that it improves memory, enhances libido and sexual performance, boosts immunity, and alleviates diabetes. But the very compounds that make ginseng good for you also make it taste bitter," said Soo-Yeun Lee, a U of I associate professor of food science and human nutrition.

In an earlier study, Lee and U of I professor of food chemistry Shelly J. Schmidt found that ginseng contributes more to the bitter perception in energy drinks than caffeine, an indispensable component of these beverages and the very compound that sensory scientists use as their reference for bitter perception.

"Ginseng has over 30 bitter compounds, and scientists still don't know which compound or group of compounds is responsible for the bitter taste," Lee said.

While experimenting with five possible solutions to ginseng's bitterness problem, they discovered that cyclodextrins—hydrophobic compounds made of glucose molecules that occur in a ring form—were able to capture the bitter flavor compounds and reduce bitterness by more than half.

Lauren Tamamoto, a graduate student who worked on the study, assembled a group of 13 non-smokers who also lacked allergies that would affect their bitter perception. Panelists had to be able to detect a chemical called 6-n-propyl-2-thiouracil (PROP) on a piece of filter paper (some people can, some people can't) and also pass basic taste tests for sweet, sour, bitter, and salty perceptions. They then participated in 12 training sessions and taste-tested 84 samples, rating each on a 16-point scale.

The researchers used the panelists to test these potentially effective bitterness-reducing treatments:

adding a related complementary flavor (in this case, citrus) as a sensory distraction

incorporating a bitterness blocking agent that neutralizes the taste buds

using ingredient interaction (the scientists added large amounts of taurine because research indicated that it might be useful in blocking bitterness)

utilizing an enzyme that would break down the peptide bonds of bitter components

experimenting with complexation, or the use of cyclodextrins to form inclusion complexes with the bitter compounds, which masks the bitter taste

"Cyclodextrins were by far the most effective method of reducing the bitterness of ginseng solutions. We also found that gamma-cyclodextrins were more successful than beta-cyclodextrins and were more cost-effective," Schmidt said.

These compounds have been used to mask bitterness before, but not at the level of ginseng used in a typical energy drink, she said.

Lee and Schmidt intend to continue studying ginseng's bitterness compounds to learn which are most responsible for producing objectionable flavors, and to gain insight into exactly how these compounds interact with cyclodextrins.

That knowledge would facilitate the use of ginseng as a functional ingredient in energy drinks and allow their manufacturers to add health benefits to the beverages beyond general nutrition and the calories they provide, Lee said.

"The U.S. energy drink industry is expected to reach $19.7 billion in sales by 2013, even though these beverages often have a medicinal taste because of their functional ingredients. If we can create more palatable products, manufacturers will be able to expand this market even further.

"But, beyond that, this new method for masking bitterness in ginseng gives food scientists an opportunity to improve the health of consumers," she said.

The study was published in the September 2010 issue of the Journal of Food Science. Lee, Schmidt, and Tamamoto were co-authors of the paper.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>