Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ginseng just got better -- not as bitter

07.12.2010
University of Illinois scientists have learned to mask the bitterness of ginseng, a common ingredient of energy drinks.

"Consumers like to see ginseng on a product's ingredient list because studies show that it improves memory, enhances libido and sexual performance, boosts immunity, and alleviates diabetes. But the very compounds that make ginseng good for you also make it taste bitter," said Soo-Yeun Lee, a U of I associate professor of food science and human nutrition.

In an earlier study, Lee and U of I professor of food chemistry Shelly J. Schmidt found that ginseng contributes more to the bitter perception in energy drinks than caffeine, an indispensable component of these beverages and the very compound that sensory scientists use as their reference for bitter perception.

"Ginseng has over 30 bitter compounds, and scientists still don't know which compound or group of compounds is responsible for the bitter taste," Lee said.

While experimenting with five possible solutions to ginseng's bitterness problem, they discovered that cyclodextrins—hydrophobic compounds made of glucose molecules that occur in a ring form—were able to capture the bitter flavor compounds and reduce bitterness by more than half.

Lauren Tamamoto, a graduate student who worked on the study, assembled a group of 13 non-smokers who also lacked allergies that would affect their bitter perception. Panelists had to be able to detect a chemical called 6-n-propyl-2-thiouracil (PROP) on a piece of filter paper (some people can, some people can't) and also pass basic taste tests for sweet, sour, bitter, and salty perceptions. They then participated in 12 training sessions and taste-tested 84 samples, rating each on a 16-point scale.

The researchers used the panelists to test these potentially effective bitterness-reducing treatments:

adding a related complementary flavor (in this case, citrus) as a sensory distraction

incorporating a bitterness blocking agent that neutralizes the taste buds

using ingredient interaction (the scientists added large amounts of taurine because research indicated that it might be useful in blocking bitterness)

utilizing an enzyme that would break down the peptide bonds of bitter components

experimenting with complexation, or the use of cyclodextrins to form inclusion complexes with the bitter compounds, which masks the bitter taste

"Cyclodextrins were by far the most effective method of reducing the bitterness of ginseng solutions. We also found that gamma-cyclodextrins were more successful than beta-cyclodextrins and were more cost-effective," Schmidt said.

These compounds have been used to mask bitterness before, but not at the level of ginseng used in a typical energy drink, she said.

Lee and Schmidt intend to continue studying ginseng's bitterness compounds to learn which are most responsible for producing objectionable flavors, and to gain insight into exactly how these compounds interact with cyclodextrins.

That knowledge would facilitate the use of ginseng as a functional ingredient in energy drinks and allow their manufacturers to add health benefits to the beverages beyond general nutrition and the calories they provide, Lee said.

"The U.S. energy drink industry is expected to reach $19.7 billion in sales by 2013, even though these beverages often have a medicinal taste because of their functional ingredients. If we can create more palatable products, manufacturers will be able to expand this market even further.

"But, beyond that, this new method for masking bitterness in ginseng gives food scientists an opportunity to improve the health of consumers," she said.

The study was published in the September 2010 issue of the Journal of Food Science. Lee, Schmidt, and Tamamoto were co-authors of the paper.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>