Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Central Office for the Allocation of Study Places (ZVS) more effective than direct applications

21.01.2010
Academics from Mainz and Regensburg propose improvements to the German ZVS system: number of disappointed applicants could be halved

In Germany, the most effective way of allocating study places in subjects for which admission is restricted, such as medicine or pharmacy, is through the Central Office for the Allocation of Study Places (Zentralstelle für die Vergabe von Studienplätzen, ZVS) in Dortmund.

The centralized ZVS procedure offers several advantages over the direct application procedure and has the potential for significant improvement, meaning that the number of disappointed applicants not receiving a place at their chosen university or close to home could be cut in half. These are the results outlined in a study by PD Dr Johannes Josef Schneider of Johannes Gutenberg University Mainz, which he undertook together with colleagues at the University of Regensburg. Their analysis and proposals for optimization of the system were published in the specialist journal Physica A.

In most cases, students with university admission qualifications have to apply directly to universities for their subject of choice. Around one third of places for students starting university are allocated by the ZVS. "Both procedures pose certain problems," states Schneider, who works at the Center for Computational Research Methods in Natural Sciences at Mainz University. "A relatively large number of candidates are frustrated and feel let down by the ZVS because they don't get a place at their chosen university. Or they have no university place at all at the start of the semester because the allocation process is still underway." As Schneider and his colleagues Christian Hirtreiter and Ingo Morgenstern at the University of Regensburg determined with the help of computer simulations, the allocation of study places in restricted subjects through the ZVS is nevertheless the more effective solution compared with the direct application process, which has now been in place for a couple of years.

It is relatively frequently the case that candidates who use the decentralized procedure and apply directly to their chosen universities have no study place at semester commencement. "As far as the politicians are concerned, it would be ideal if universities could pick and choose their own students and decide for themselves which applicants are best suited to which subject at their university. But the reality is completely different," explains Schneider. It is true that universities do, to a large extent, make their decisions on the basis of the examination grades achieved by a candidate. This means that because each candidate applies to several universities at once to increase the chances of getting a place, the applicants with the best exam results are offered places first, while the candidates with lower marks are rejected and have to apply again. However, the computer simulations show that the situation worsens the more applications each school leaver submits. "In the ideal scenario, where each candidate only applies to one university, the number of subsequent application rounds would be reduced and the university places would be allocated on time for the start of semester." According to the computer model, however, if applicants each try their luck at three universities, some applicants could need up to 30 application rounds before they are successful - which would mean a waiting time of two and a half years before they can begin studying.

The ZVS system, on the other hand, means that more students can begin their studies on time and fewer places are free at universities at the start of semester, which is beneficial for both the individuals and society as a whole. But the ZVS allocation system is not without problems. "For example, it is quite possible that an applicant from Cologne who lists Heidelberg as his first choice, Munich as his second choice, and Cologne as his third might not be offered a place at any of these chosen universities, as the ZVS processes each university choice individually, one after the other. As one major decisive factor is proximity to the university, the applicant has no chance of getting a place in either Heidelberg or Munich. By the third round, the places at Cologne University will have already been allocated to applicants who listed Cologne as their first or second choice." Schneider and his co-authors have thus decided to propose a system which looks at university choices not individually but together at the same time. In their computer simulations, they were able to reduce the number of students who fail to get a place at one of their selected universities or close to home by more than 50 percent in comparison with the corresponding figure for the current ZVS selection procedure.

The researchers found that the best results can be achieved using optimization algorithms that are also used in solution-finding in other areas. The US news magazine "Time", for example, recently listed one of Schneider's computer algorithms for the optimization of packing problems among the top 50 most important inventions of 2009. And the academics have adopted a similar approach to the problem of study place allocations. Random events are simulated on the computer using so-called Monte Carlo simulations. "Just like in a casino where chance decides that the ball lands on number 12 on a roulette wheel, the computer also generates random configurations," explains Schneider. In the case of university applications, the computer first allocates each prospective university student to a random university. Then two applicants randomly swap their university places. The new solution is compared with the previous one. The quality of the solution is evaluated on the basis of how many students are assigned to one of their chosen universities or are given a study place close to home. If this exchange between applicants results in a major deterioration in outcome, the applicants are re-assigned their original university places - otherwise the new solution is retained. "Using this method it is possible to implement a step-by-step system of allocation of university places until the end result is achieved and the applicants have all been appropriately assigned study places."

Original publication:
Johannes J. Schneider, Christian Hirtreiter, and Ingo Morgenstern
On the Problem of Finding a Suitable Distribution of Students to Universities in
Germany
Physica A, vol. 388, pp. 4475-4483, 2009
doi:10.1016/j.physa.2009.07.010

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

Further reports about: ZVS computer simulation disappointed applicants

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>