Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoflood Information Visualisor (GFIV)

07.08.2014

This flood information visualization software will be an excellent tool for water resources planning and management as well as for better flood decision making analysis.

Floods have caused such tremendous devastation which contributes to excessive losses and causes untold suffering to millions of people affected by it. Even today, floods lead all natural disasters in the number of people affected and contributing to great economic loss, with these numbers rising at an alarming rate.


Village affected by the 2006 floods in Malaysia. Data from this flood was used in the Geoflood Information Visualisor software. Copyright : Wikimedia

The aim of this study is to provide a framework for flood hazard map identification, mapping and information related to flooding visualization from previous flooding of the study area.

The objectives of this project are i) to model flood hazard area of the Sg Segamat catchment using two dimensional (2D) hydrodynamic modelling and geospatial techniques data analysis and visualization, ii) to produce geospatial flood hazard inventory of area, types of land use, number of people (i.e. age, gender etc.) affected which can be displayed as statistical and visual informative results.

The Infoworks RS, ArcGIS and ArcScene which are computational programmes for designing and managing solutions through the application of geographic knowledge were used to determine the flooding behaviour technically and spatially.

In this study the model represents the hydraulic phenomena in Sg Segamat catchment which occurred from 16-28 December 2006.The development of this hydrodynamic models consist of coupling one dimensional (1D) the focus area being for rivers and network system with the two dimensional (2D) which is on flood plains and overland flow path. The dynamic communication between models will greatly assist in predicting the level of hazards within certain time steps.

The outcome of the study indicated that the most affected area was in the downstream region of Sungai Segamat. More than half of the flood area (57.9%) is located at the Mukim Gemereh which lies in the downstream of Sungai Segamat catchment. Other specific areas which are inundated by flood were Bandar Segamat, Kg. Chabong, Kg Tg Sengkawan, Taman Mega, Kg Jawa and Kg Padang Lalang.

The validation of the results shows 61% of the total flood inundation area lies in the same area of the modelled flood. The adversely affected land use activity was agricultural activities which were predominantly rubber plantations. The integration techniques between hydraulic modelling and geospatial data preparation and analysis were able to provide insightful framework for better flooding understanding and information in spatial manner.

The flood information visualization derived from this study may be suitable to be used as tool especially, for water resources planning and management as well as by local authorities such as from Department of Irrigation and Drainage (DID) and also by Town, Country and Planning for better flooding decision making analysis related to flooding.


Nor Aizam Adnan
Faculty of Architecture, Planning and Surveying
University Teknology MARA
Email: nor_aizam@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: Irrigation Teknologi UiTM activities downstream flood hydrodynamic natural phenomena steps techniques

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>