Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide study identifies 8 new susceptibility loci for atopic dermatitis

08.10.2012
Researchers at the RIKEN Center for Genomic Medicine (CGM) and their colleagues have identified 8 new loci associated with susceptibility to atopic dermatitis in the Japanese population. The findings, which appear in the journal Nature Genetics, advance our understanding of the genetic basis of the skin disorder, which affects millions of children and adults around the world.

Atopic dermatitis (often called ecszema) is a chronic, relapsing inflammatory skin condition affecting as much as one-fifth of children and 1-3% of adults in industrialized countries. Those with the condition have skin that reacts easily to the environment and becomes flaky and itchy. While treatment can alleviate some of these symptoms, current techniques remain ineffective in many cases, due in part to a limited scientific understanding of the origins of the condition.

The research group set out to shed light on these origins using a genome-wide association study (GWAS), an approach which identifies gene loci associated with a particular trait. With its strong genetic basis, atopic dermatitis is well suited to the GWAS approach. Three previous GWAS on European and Chinese populations identified 7 loci associated with the condition, but no such studies have been conducted on Japanese people.

To fill this gap, the group conducted a thorough GWAS on 1472 subjects with atopic dermatitis and 7971 controls from among the Japanese population, and then validated their results in a separate study on 1856 subjects with atopic dermatitis and 7021 controls. Analyzing a total of roughly 600,000 genetic variants (called Single Nucleotide Polymorphisms or SNPs), they identified 8 new genetic regions associated with atopic dermatitis and confirmed the 7 loci observed in earlier studies. Among these regions, they identified variants at the IL1RL1/IL18R1/IL18RAP and human leukocyte antigen (HLA) loci, both of which have been associated with bronchial asthma in recent GWAS.

The group's findings thus suggest that atopic dermatitis and asthma have overlapping susceptibility regions, and thus that these regions contain common genetic factors for many allergic diseases. Other loci reveal a wide variety of additional factors possibly involved in the condition, suggesting paths for future research and pointing the way to more effective treatment techniques.

Reference

Tomomitsu Hirota, et al. "Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population." Nature Genetics, 2012, DOI: 10.1038/ng.2438

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Reach us on twitter: @rikenresearch

RIKEN Global Relations Office | EurekAlert!
Further information:
http://www.riken.jp

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>