Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide study of autism published in Nature

09.10.2009
Combining family- and population-based approaches sheds new light on the potential roles of both common and rare forms of human genetic variation

In one of the first studies of its kind, an international team of researchers has uncovered a single-letter change in the genetic code that is associated with autism.

The finding, published in the October 8 issue of the journal Nature, implicates a neuronal gene not previously tied to the disorder and more broadly, underscores a role for common DNA variation. In addition, the new research highlights two other regions of the genome, which are likely to contain rare genetic differences that may also influence autism risk.

"These discoveries are an important step forward, but just one of many that are needed to fully dissect the complex genetics of this disorder, " said Mark Daly, one of the study's senior authors, a senior associate member at the Broad Institute of Harvard and MIT and an associate professor at the Center for Human Genetic Research at Massachusetts General Hospital (MGH). "The genomic regions we've identified help shed additional light on the biology of autism and point to areas that should be prioritized for further study."

"The biggest challenge to finding the genes that contribute to autism is having a large and well studied group of patients and their family members, both for primary discovery of genes and to test and verify the discovery candidates," said Aravinda Chakravarti, professor of medicine, pediatrics and molecular biology and genetics at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins, and one of the study's senior authors. "This latest finding would not have been possible without these many research groups and consortia pooling together their patient resources. Of course, they would not have been possible without the genomic scanning technologies either."

Autism is a common neurodevelopmental disorder characterized by impaired social, behavioral and communication abilities. Compared to other complex diseases, which are caused by a complicated mix of genetic, environmental and other factors, autism is highly heritable — roughly 90% of the disorder is thought to be genetic in origin. Yet the majority of autism cases cannot be attributed to known inherited causes.

Modern approaches that harness genome-scale technologies have begun to yield some insights into autism and its genetic underpinnings. However, the relative importance of common genetic variants, which are generally present in the human population at a frequency of about 5%, as well as other forms of genetic variation, remains an unresolved question.

To more deeply probe autism's complex genetic architecture, a large multinational collaboration led by researchers at the Broad Institute of Harvard and MIT, Massachusetts General Hospital, Johns Hopkins University and elsewhere devised a two-pronged, genome-scale approach. The first component makes use of a family-based method (called "linkage") that analyzes DNA from autism patients and their family members to detect portions of the genome that harbor rare but high-impact DNA variants. The second harnesses a population-based method (known as "association") that examines DNA from unrelated individuals and can expose common genetic variants associated with autism and which tend to exert more modest effects.

"Given the genetic complexity of autism, it's unlikely that a single method or type of genomic variation is going to provide us with a complete picture," said Daly. "Our approach of combining multiple complementary methods aims to meet this critical challenge."

For their initial studies, the researchers examined roughly half a million genetic markers in more than 1,000 families from the Autism Genetic Resource Exchange (AGRE) and the US National Institute of Mental Health (NIMH) repositories. Follow-up analyses were conducted in collaboration with the Autism Genome Project as well as other international groups. "We are deeply grateful to all of the patients and their families who made this work possible," said Daly.

The researchers' results highlight three regions of the human genome. These include parts of chromosomes 6 and 20, the top-scoring regions to emerge from the family-based linkage studies. Although further research is needed localize the exact causal changes and genes within these regions that contribute to autism, these findings can help guide future work.

The other major result, this one flowing from the population-based analyses, is a single-letter change in the genetic code known as a single nucleotide polymorphism, or SNP (pronounced "snip"). This common variant lies on chromosome 5 near a gene known as semaphorin 5A, which is thought to help guide the growth of neurons and their long projections called axons. Notably, the activity or "expression" of this gene appears to be reduced in the brains of autism patients compared to those without the disorder.

"These genetic findings give us important new leads to understand what's different in the developing autistic brain compared with typical neurodevelopment. We can now begin to explore the pathways in which this novel gene acts, expanding our knowledge of autism's biology," said co-lead author Lauren Weiss, a former postdoctoral fellow who collaborated with Daly and his colleagues at MGH and the Broad Institute. Weiss is now an assistant professor of psychiatry and human genetics at University of California, San Francisco (UCSF).

Although the Nature paper identifies a handful of new genes and genomic regions, the researchers emphasize that the findings are just one piece of a very large — and mostly unfinished — puzzle. Future studies involving larger patient cohorts and higher resolution genomic technologies, such as next-generation DNA sequencing, promise to yield a deeper understanding of autism and its complex genetic roots.

This work was supported by the Autism Consortium, the Nancy Lurie Marks Family Foundation, NARSAD, the National Center for Research Resources, the National Institute of Mental Health, the Simons Foundation as well as other funding agencies.

Paper cited:

Weiss LA, Arking DE, The Gene Discovery Project of Johns Hopkins & the Autism Consortium. A genome-wide linkage and association scan reveals novel loci for autism. Nature DOI:10.1038/nature08490.

About the Broad Institute of MIT and Harvard

The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to www.broadinstitute.org.

About Massachusetts General Hospital

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Nicole Davis | EurekAlert!
Further information:
http://www.broadinstitute.org
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>