Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome study confirms immune system link to disfiguring leg swelling

29.03.2012
Genetic variants in a region of the genome linked to our immune response have been linked to increased risk of podoconiosis, a disfiguring and disabling leg swelling caused by an abnormal reaction to the minerals found in soil. An estimated 4 million people worldwide suffer from the condition.

In a study published today in the New England Journal of Medicine, researchers funded by the Wellcome Trust and the Association of Physicians of Great Britain and Ireland compared the genomes of 194 people affected by the disease from southern Ethiopia against 203 people who were unaffected. They identified three genetic variants that increased the risk of developing the condition.


Podoconiosis, a type of elephantiasis (leg swelling) found in farming communities in the tropics, is triggered by an abnormal reaction to irritant mineral particles found in soils of volcanic origins amongst people who cannot afford shoes. Credit: Gail Davey

Podoconiosis, or 'podo', as it is often called, was added to the World Health Organization's list of neglected tropical diseases in 2011. It is a type of elephantiasis (leg swelling) found in farming communities in the tropics and is triggered by an abnormal reaction to irritant mineral particles found in soils of volcanic origins amongst people who cannot afford shoes.

Many years of walking, ploughing or playing barefoot on these soils appears to trigger inflammatory changes within the lymph system in the legs, which in time can lead to foot swelling and ultimately elephantiasis.

The disease often runs in families, implying that there is a hereditary component to the disease, but until now, no genetic variants had been identified which confer increased risk. The genetic variants discovered in this new study all fall within a region of the genome known as the HLA class II, which is important in controlling immune responses. Combined, the three variants increase the risk of developing podoconiosis by a factor of two to three.

Prof Melanie Newport from Brighton & Sussex Medical School, who led the study, says: "The region where we have found these susceptibility genes for podoconiosis plays an important role in controlling our immune system. It confirms what we had expected, that there is an immunological basis to the disease. Although this is still early days for identifying potential treatments, it suggests that drugs that target immune responses may be useful."

First author Dr Fasil Tekola Ayele from the Armauer Hansen Research Institute, Ethiopia, adds: "Genome wide association studies on African populations are still fairly novel. However, this study highlights the importance of such studies in helping us understand the origins of diseases that are particularly common on the continent." Dr Ayele is currently on a postdoctoral attachment at the National Human Genome Research Institute, USA.

Dr Abraham Aseffa, also from the Armauer Hansen Research Institute, says: "Our next step is to try to pinpoint exactly which molecules are involved in podoconiosis, and which specific genetic mutations affect the function of these molecules. This will shed a lot more light on potential therapeutic options."

Professor Newport and colleagues have recently launched Footwork, an international initiative to bring together public and private partners to prevent and treat podoconiosis Footwork aims to integrate podoconiosis control with that of other neglected tropical diseases wherever possible, and to partner with organizations working in foot-related conditions to advocate for shoes as cost-effective interventions to tackle such diseases.

"There are still many places round the world where people cannot afford a pair of shoes," says Dr Gail Davey, co-author on the study and Executive Director of Footwork. "For some people, this means cold, cut or bruised feet, but for others it can lead to podoconiosis, which can have a significant impact on their quality of life. We hope that shoes can become the 'new bed-nets': simple, cost-effective interventions that mean that in future there is no reason for anyone's life to be destroyed for the want of a shoe."

Commenting on the findings, Dr Jimmy Whitworth, Head of International Activities at the Wellcome Trust, adds: "Podoconiosis is finally getting the attention it deserves as a disease that blights the lives of millions of people. The success of this international collaboration is testament to the importance of providing opportunities for training and building capacity for African researchers to take a lead on important work such as this."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>