Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First whole-genome lung cancer study by TGen and Virginia G. Piper Cancer Center set for conference

Review of lung tumor from a patient who never smoked revealed at IASLC meeting in Amsterdam

A first-of-its-kind study of a patient with lung cancer who never smoked will be presented today by TGen and the Virginia G. Piper Cancer Center at Scottsdale Healthcare at the 14th World Conference on Lung Cancer, July 3-7 in Amsterdam.

Researchers for the first time sequenced the entire DNA and RNA of a patient with metastatic adenocarcinoma of the lung, said Dr. Glen Weiss, the first author of the study, which will be published in a special supplement of the Journal of Thoracic Oncology. Dr. Weiss also is Director of Thoracic Oncology at Virginia G. Piper Cancer Center Clinical Trials, a partnership between TGen and Scottsdale Healthcare that treats cancer patients with promising new drugs.

The patient is a 61-year-old woman who never smoked whose lung cancer had entered her bloodstream and spread to other parts of her body. She had been treated with several types of chemotherapy.

The study, Advanced Never Smoker Adenocarcinoma of the Lung: Report of paired normal and tumor whole genome and transcriptome sequencing, will be presented at the conference today, July 6. The study used Whole Genome Sequencing (WGS), also called Next-Generation Sequencing (NGS), to look at all 3 billion chemical bases of the patient's normal, as well as the patient's tumor, DNA.

The study went further by examining the normal and tumor RNA for whole transcriptome sequencing, which can reveal the possible defects in how proteins are synthesized. This provided an even more intricate view of the tumors biological make up and what might have led to her cancer.

"Evidently, this is very exciting. Next-Generation Sequencing now offers us the ability to survey the global landscape of cancer," said Dr. John Carpten, Director of TGen's Integrated Cancer Genomics Division and senior author of the presentation.

The results of the patient's sequencing were discussed with her treating oncologist and may be used along with other information to help decide the best course of future treatment.

A review of well-characterized cancer-related genes found that a mutation resided in the TP53 gene, a mutation in the tumor (one base change in the genetic code), and that the mutation was always present in both the DNA and RNA. Such a mutation can halt the creation of tumor suppressor genes and result in the generation of a tumor. Interestingly, the cancer specimen showed no loss of heterozygosity (LOH), in which one side of the DNA's chromosome becomes inactive because of a mutation.

"This observation highlights the complexity of cancer and how different genetic mechanisms can alter a gene. This novel finding would not have been readily determined without the combined DNA and RNA integration approach," said Dr. David Craig, Associate Director of TGen's Neurogenomics Division, and also a senior author of the presentation.

Dr. Weiss said these investigative techniques will be used more often to pinpoint the origins of disease.

"In the future, with improved infrastructure and decreased costs, we anticipate that using NGS techniques will become more commonplace," Dr. Weiss said. "NGS has the potential to identify unique tumor aberrations at an unprecedented depth."

The conference is sponsored by the International Association for the Study of Lung Cancer (IASLC), which hosts a meeting every two years.

The study was funded, in part, by the National Foundation for Cancer Research.

About the National Foundation for Cancer Research

For nearly four decades, the National Foundation for Cancer Research has been committed to discovery-oriented scientific research — Research for a Cure. We believe that in order to fully conquer this devastating disease, we need to encourage innovative scientists to study cancer at its most fundamental level. Our funding of over 50 laboratories worldwide has led to some of the most significant breakthroughs in cancer research, including new approaches such as targeted cancer therapies.

Press Contact:
Silas Deane
Vice President, Marketing & Communications
1-301- 961-9105 or 1-615- 244-8035
About The Virginia G. Piper Cancer Center at Scottsdale Healthcare
The Virginia G. Piper Cancer Center at Scottsdale Healthcare in Scottsdale, Ariz. offers comprehensive cancer care and research through Phase I clinical trials, diagnosis, treatment, prevention and support services in collaboration with leading scientific researchers and community oncologists. Scottsdale Healthcare is the nonprofit parent organization of the Virginia G. Piper Cancer Center at Scottsdale Healthcare, Scottsdale Healthcare Research Institute, Scottsdale Healthcare Osborn Medical Center, Scottsdale Healthcare Shea Medical Center and Scottsdale Healthcare Thompson Peak Hospital. For more information, visit
Press Contact:
Keith Jones
Public Relations Director, Virginia G. Piper Cancer Center
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, visit:
Press Contact:
Steve Yozwiak
TGen Senior Science Writer

Steve Yozwiak | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>