Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics and Sociality

29.11.2011
Researchers show in the journal “PNAS” how friends can relieve stress

Social support from family and friends is one of the most powerful protective factors against stress-related diseases - from heart attacks to depression. Prof. Markus Heinrichs, Professor of Biological Psychology at the University of Freiburg, demonstrated in 2003 for the first time in humans that the neurohormone oxytocin plays a central role in both the control of stress and the stress-reducing effect of social support. He has also shown in a series of studies that oxytocin administered as a nasal spray increases trust and empathy for others and therefore has therapeutic potential for a range of mental disorders.

But could the oxytocin system also help explain why support from close friends and family has very different effects on individuals?

In the current issue of the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS), the Freiburg psychologists and neuroscientists Prof. Markus Heinrichs, Dr. Frances S. Chen, Dr. Robert Kumsta, and Dr. Bernadette von Dawans, together with the researchers Prof. Richard P. Ebstein and Dr. Mikhail Monakhov of the National University of Singapore, examined for the first time genetic modulation of social support’s effectiveness during stress through variants of the oxytocin receptor gene (OXTR). The hormonal and subjective stress responses of 200 adults to a standardized social stress test were studied; half of the sample was asked to bring a close friend for support. “The presence of a friend during preparation for the test reduced stress in most people; interestingly, however, the group of people carrying a particular variant of the oxytocin receptor gene did not benefit from the support" said Frances S. Chen. For Markus Heinrichs, these results have far-reaching consequences for current research on new therapeutic approaches: "The ‘psychobiological therapy' we are currently developing involves a completely new combination of oxytocin and psychotherapy for mental disorders involving social deficits – here, it is of great relevance to understand how ‘sensitive’ this system is in different patients.”

Original Publication:
Chen, F.S.*, Kumsta, R.*, von Dawans, B., Monakhov, M., Ebstein, R.P. & Heinrichs, M. (2011). Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proceedings of the National Academy of Sciences of the United States of America (PNAS), in press. (* shared first authorship)

www.psychologie.uni-freiburg.de/abteilungen/psychobio

Contact:
Prof. Dr. Markus Heinrichs
Department of Psychology
University of Freiburg
Phone: 0049-761-203-3029
Fax: 0049-761-203-3023
E-mail: heinrichs@psychologie.uni-freiburg.de

Prof. Dr. Markus Heinrichs | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>