Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically Speaking, Mammals Are More Like Their Fathers

04.03.2015

A first of its kind study shows that who we inherit genetic variants from – our mother or father – is crucial for the development of diseases and for research studies aimed at finding causes and potential treatments.

You might resemble or act more like your mother, but a novel research study from UNC School of Medicine researchers reveals that mammals are genetically more like their dads. Specifically, the research shows that although we inherit equal amounts of genetic mutations from our parents – the mutations that make us who we are and not some other person – we actually “use” more of the DNA that we inherit from our dads.

The research, published in the journal Nature Genetics, has wide implications for the study of human disease, especially when using mammalian research models. For instance, in many mouse models created for the study of gene expression related to disease, researchers typically don’t take into account whether specific genetic expression originates from mothers or fathers. But the UNC research shows that inheriting a mutation has different consequences in mammals, depending on whether the genetic variant is inherited from the mother or father.

“This is an exceptional new research finding that opens the door to an entirely new area of exploration in human genetics,” said Fernando Pardo-Manuel de Villena, PhD, professor of genetics and senior author of the paper. “We’ve known that there are 95 genes that are subject to this parent-of-origin effect. They’re called imprinted genes, and they can play roles in diseases, depending on whether the genetic mutation came from the father or the mother. Now we’ve found that in addition to them, there are thousands of other genes that have a novel parent-of-origin effect.”

These genetic mutations that are handed down from parents show up in many common but complex diseases that involve many genes, such as type-2 diabetes, heart disease, schizophrenia, obesity, and cancers. Studying them in genetically diverse mouse models that take parent-of-origin into account will give scientists more precise insights into the underlying causes of disease and the creation of therapeutics or other interventions.

The key to this research is the Collaborative Cross – the most genetically diverse mouse population in the world, which is generated, housed, and distributed from UNC. Traditional lab mice are much more limited in their genetic diversity, and so they have limited use in studies that try to home in on important aspects of diseases in humans. The Collaborative Cross bred together various wild type mice to create wide diversity in the mouse genome. Pardo-Manuel de Villena said that this diversity is comparable to the variation found in the human genome. This helps scientists study diseases that involve various levels of genetic expression across many different genes.

Gene expression connects DNA to proteins, which then carry out various functions inside cells. This process is crucial for proper human health. Mutations that alter gene expression are called regulatory mutations.

“This type of genetic variation is probably the most important contributor – not to simple Mendelian diseases where there’s just one gene mutation [such as cystic fibrosis] – but to much more common and complex diseases, such as diabetes, heart disease, neurological conditions, and a host of others,” Pardo-Manuel de Villena said. “These diseases are driven by gene expression, not of one gene but of hundreds or thousands of genes.

“The Collaborative Cross and the expertise we have at UNC allow us to look at different gene expression for every gene in the genome of every kind of tissue,” said Pardo-Manuel de Villena, who directs the Collaborative Cross.

For the Nature Genetics study, Pardo-Manuel de Villena’s team, including first author James Crowley, PhD, assistant professor of genetics, selected three genetically diverse inbred strains of mice that were descended from a subspecies that evolved on different continents. These mice were bred to create nine different types of hybrid offspring in which each strain was used as both father and mother. When the mice reached adulthood, the researchers measured gene expression in four different kinds of tissue, including RNA sequencing in the brain. They then quantified how much gene expression was derived from the mother and the father for every single gene in the genome.

“We found that the vast majority of genes – about 80 percent – possessed variants that altered gene expression,” Crowley said. “And this was when we discovered a new, genome-wide expression imbalance in favor of the dad in several hundred genes. This imbalance resulted in offspring whose brain gene expression was significantly more like their father’s.”

For every gene a scientist is interested in, Pardo-Manuel de Villena’s team can create mice that have low, intermediate, or high expression of genes. And they can explore if that expression is associated with a specific disease.

“This expression level is dependent on the mother or the father,” Pardo-Manuel de Villena said. “We now know that mammals express more genetic variance from the father. So imagine that a certain kind of mutation is bad. If inherited from the mother, the gene wouldn’t be expressed as much as it would be if it were inherited from the father. So, the same bad mutation would have different consequences in disease if it were inherited from the mother or from the father.”

These types of genetic mutations across hundreds of genes are hard to study and a major bottleneck to realizing the promises of the post-genome era. But Pardo-Manuel de Villena said, “Thanks to the Collaborative Cross, the mouse can be used to model how these genes work and how they impact health and disease in any kind of tissue in the body.”

The Human Genome Research Institute and the National Institute of Mental Health funded the creation of the UNC Center for Integrated Systems Genetics (CISGen), which contributed to the development and funding of proof of principle experiments for the Collaborative Cross to find genetic and environmental factors important in psychiatry. Pardo-Manuel de Villena and Patrick Sullivan, PhD, professor of genetics and author of the paper, are co-principal investigators. Both are members of the Carolina Center for Genome Sciences and the UNC Lineberger Comprehensive Cancer Center. Pardo-Manuel de Villena is the associate chair for research in the department of genetics.

Other co-first authors of the Nature Genetics paper are Vasyl Zhabotynsky, a graduate research assistant in the department of genetics and biostatistics; Wei Sun, PhD, associate professor of genetics and biostatistics in the UNC School of Medicine and the UNC Gillings School of Global Public Health, and member of the Carolina Center for Genomic Sciences. Additional key co-authors include a team of graduate students directed by Leonard McMillan, PhD, associate professor of computer science in the UNC College of Arts and Sciences.

Contact Information
Mark Derewicz
Science Communications Manager
mark.derewicz@unch.unc.edu

Mark Derewicz | newswise
Further information:
http://www.med.unc.edu/

Further reports about: Collaborative Genetics Nature Genetics UNC diseases diversity genes genetic mutations mutations

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>