Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation increases risk of metabolic side effects in children on some antipsychotics

25.01.2012
Associated with increased blood pressure and elevated blood sugar levels

Researchers have found a genetic variation predisposing children to six-times greater risk of developing metabolic syndrome when taking second-generation anti-psychotic medications. Metabolic syndrome is a cluster of conditions that are risk factors for cardiovascular disease.

The study showed a close association with two conditions in particular: high blood pressure and elevated fasting blood sugar levels, which is a precursor to diabetes. The research is published today in the medical research journal Translational Psychiatry.

"This is the first report of an underlying biological factor predisposing children to complications associated with second-generation anti-psychotic medication use," says Dr Dina Panagiotopoulos, study co-author, clinician scientist at the Child & Family Research Institute (CFRI), pediatric endocrinologist at BC Children's Hospital, and assistant professor, Department of Pediatrics, University of British Columbia (UBC).

"It's concerning because these children take medications to treat a chronic disease – mental illness – and then develop risk factors for a second chronic disease," says Dr. Angela Devlin, study co-author, CFRI scientist and assistant professor in the UBC Department of Pediatrics.

Second-generation anti-psychotics are prescribed to approximately 5500 children and youth in British Columbia for psychotic disorders, mood and anxiety disorders, attention deficit hyperactivity disorder, autism spectrum disorders, adjustment disorders and substance abuse. Of these medications, the two most commonly prescribed in B.C. are quetiapine (Seroquel®) and risperidone (Risperdal®).

For the study, researchers assessed 209 children who were inpatients between April 2008 and June 2011 at the Child & Adolescent Psychiatry Department at BC Children's Hospital, an agency of the Provincial Health Services Authority. Their average age was 13 years, and 105 of the children were treated with second-generation anti-psychotics while 112 did not use these drugs. DNA analysis showed that eight per cent of children from both groups had a genetic variation called C677T on the MTHFR gene. Children with the MTHFR C677T variant who used these medications were six-times more likely to have metabolic syndrome.

The researchers targeted the MTHFR C677T variant because it is known to be associated with metabolic syndrome in adults who have schizophrenia, and with cardiovascular disease in adults who don't have psychiatric illness.

Dr. Devlin and Dr. Panagiotopoulos say their discovery is an important step to preventing and managing metabolic complications associated with second-generation antipsychotic medications. It is critical to reduce these risks in childhood because adults with mental illness have a 19 per cent increased mortality rate that is largely due to cardiovascular disease risk.

The MTHFR gene is involved in metabolizing the B-vitamin folate.

"We now plan to assess B vitamin status and dietary intake in children who take these medications to gain a better understanding of this association," says Dr. Panagiotopoulos.

This study was funded by CFRI and the Canadian Diabetes Association.

Dr. Panagiotopoulos's previous research on the metabolic side effects of anti-psychotics in children led to national recommendations for clinicians on monitoring and managing the care of children who take these medications. The recommendations were published in the Journal of the Canadian Academy of Child and Adolescent Psychiatry in August 2011 and in Pediatrics and Child Health in November 2011.

CFRI conducts discovery, clinical and applied research to benefit the health of children and families. It is the largest institute of its kind in Western Canada. CFRI works in close partnership with UBC; BC Children's Hospital and Sunny Hill Health Centre for Children, BC Women's Hospital & Health Centre, agencies of PHSA; and BC Children's Hospital Foundation. CFRI has additional important relationships with British Columbia's (B.C.'s) five regional health authorities and with B.C. academic institutions Simon Fraser University, the University of Victoria, the University of Northern British Columbia, and the British Columbia Institute of Technology. For more information, visit http://www.cfri.ca.

BC Children's Hospital, an agency of the Provincial Health Services Authority, provides expert care for the province's most seriously ill or injured children, including newborns and adolescents. BC Children's is an academic health centre affiliated with the University of British Columbia, Simon Fraser University, and the Child & Family Research Institute. For more information, please visit http://www.bcchildrens.ca.

UBC is one of Canada's largest and most prestigious public research and teaching institutions, and one of only two Canadian institutions to be consistently ranked among the world's 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC attracts $550 million per year in research funding from government, non-profit organizations and industry through 7,000 grants.

Jennifer Kohm | EurekAlert!
Further information:
http://www.cfri.ca
http://www.ubc.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>