Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic map of African-Americans to aid study of diseases, human evolution

21.07.2011
A group of researchers from the University of Oxford, Harvard Medical School and the University of Mississippi Medical Center has constructed the world's most detailed genetic map, a tool scientists can use to better understand the roots of disease and how DNA is passed generationally to create diversity in the human species.

About 5,000 Jackson-area volunteers were included in a group of nearly 30,000 African-Americans whose genetic information the scientists used to create the map.

The map pinpoints genome locations where people splice together DNA from their mothers and fathers to produce sperm or eggs. That process, known as recombination, mixes DNA from the person's parents and passes it on to his or her children.

Almost every prior genetic map was developed in people of European ancestry. The new map is the first built in African-Americans.

"The world's best genetic map is now built in African-Americans," said David Reich, professor of genetics at Harvard Medical School, who co-led the study with Simon Myers, a lecturer in statistics at the University of Oxford. "This map, built in 30,000 African-Americans who are from studies of heart disease and cancer, has a resolution so high it is now the world's most accurate map."

The findings will be published in the July 21 edition of Nature.

Dr. James Wilson, UMMC professor of medicine and the study's coordinator, said the map holds promise for both broad, genome-wide applications and narrowly focused, single-disease research.

"The map will be helpful in finding the genetic roots of any disease that's affected by inheritance – which is virtually every disease," he said.

For example, studies have shown certain diseases, such as hypertension, affect African-Americans at greater rates than whites, even with other variables like age, weight and socioeconomic level accounted for. The map could be used to better understand why.

A surprise was that the map turned out to be different than those based on people of European and other non-African ancestries.

"The landscape of recombination has shifted in African-Americans compared with Europeans," said Anjali Hinch, the study's first author and a post-graduate student at the Oxford University's Wellcome Trust Centrefor Human Genetics.

Wilson said the African-American genome has become distinct because of recombination in the U.S. during the past two to three centuries.

"African-Americans are a genetically distinguishable group from other continental populations," he said. "African-Americans differ from their African ancestors in that most of them also have genes from European ancestors."

The researchers knew that going into the project. But once they analyzed the breakpoints where recombination occurs in African-American genomes, an unexpected difference appeared.

"Over half of African-Americans carry a version of the biological machinery for recombination that is different to that in Europeans. As a result, African-Americans experience recombination where it almost never occurs in Europeans," Myers said.

Scientists have only recently begun to explore the genetic differences between individuals and populations — and the roles those differences play in human health. In that respect, the first draft of the human genome, completed a decade ago, was only a starting point for understanding the genetic origins of disease.

As researchers begin to parse those differences, a crucial tool is a genetic map, as it determines how some groups of genetic differences tend to be inherited together. Recombination, together with mutation, accounts for all the genetic (and thus physical) variety we see within species. But while mutation refers to the errors introduced into single locations within genomes when cells divide, recombination refers to the process by which huge chunks of chromosomes are stitched together during sexual reproduction.

A key to the success of genetic maps is that this stitching occurs only at specific locations in the genome. In a landmark set of papers, Myers and his colleagues previously identified a particular DNA code, or motif, that attracted the recombination machinery. Knowing the motif, a string of 13 DNA letters, researchers could zero in on the exact locations where recombination typically occurred—the "recombination hotspots."

"When recombination goes wrong, it's known that this can lead to mutations causing congenital diseases, for example diseases like Charcot-Marie-Tooth disease, or certain anemias. We found the same 13-base motif marking many of these disease-mutation sites," said Myers.

Reich, who is also a senior associate member of the Broad Institute, said the places in the genome where there are recombination hotspots can also be disease hotspots.

"Charting recombination hotspots can thus bring us to the places in the genome that cause disease," he said.

The researchers discovered that the 13 base-pair motif responsible for many hotspots in Europeans accounts for only two-thirds as much recombination in African-Americans. They connected the remaining third to a new motif of 17 base pairs, which is recognized by a version of the recombinational machinery that occurs almost exclusively in people of African ancestry.

These findings are expected to help researchers understand the roots of congenital conditions that occur more often in African-Americans (due to mutations at the hotspots that are more common in African-Americans), and also to help discover new disease genes in all populations, because of the ability to map these genes more precisely.

The new map is so accurate specifically because so many African-Americans have both African and European genes, due to racial mixing during the last couple of hundred years. Reich and Myers are experts in analyzing genetic data to reconstruct the mosaic of regions of African and European genetic ancestry in DNA of modern African-Americans.

Using a computer program Reich and Myers wrote specifically to sort the massive amounts of data, Hinch identified places in the genomes of the 30,000 people where switches occurred between African and European ancestry, detecting about 70 per person. These switches correspond to recombination events in the last couple of hundred years, resulting in the more than 2 million recombination events that the researchers used to build the map.

The study was only possible because of collaboration from 81 co-authors from many institutions, using DNA samples from five large studies that had previously been carried out to study common diseases such as heart disease and cancer, funded by the National Institutes of Health, the Department of Defense, and many private foundations.

"All the co-authors worked together in an incredibly collegial way to put together the enormous set of samples and high quality genetic data that made this study a success," Wilson said.

The analytic work for this study was supported by a nearly $1 million grant to Wilson at UMMC from the National Institute of General Medicine through the American Recovery and Reinvestment Act.

The recombination map is available at http://www.well.ox.ac.uk/~anjali/AAmap/

Acknowledgements

The almost 30,000 African-Americans whose DNA was analyzed for this project were participants in five large studies:

The Candidate Gene Association Resource (CARe) is a consortium of nine observational studies of cardiovascular disease and related traits. The consortium includes two Mississippi-based population studies: Atherosclerosis Risk in Communities (ARIC) Study and the Jackson Heart Study. The CARe consortium is supported by the National Heart, Lung, and Blood Institute and diverse other grants.

The African American Breast Cancer Consortium (AABCC) is a consortium of 8 studies of women with and without breast cancer, supported by the National Cancer Institute and diverse other grants.

The African American Prostate Cancer Consortium (AAPCC) is a consortium of 10 studies of men with and without prostate cancer, supported by the National Cancer Institute and diverse other grants.

The African American Lung Cancer Consortium (AALCC) is a consortium of 7 studies of people with and without lung cancer, supported by the National Cancer Institute and diverse other grants.

Many samples also come from the Children's Hospital of Philadelphia (CHOP), which has established a biobank for Philadelphia children to facilitate disease gene discovery.

For a complete list of institutions and granting agencies that supported this work, contact David Cameron at David_Cameron@hms.harvard.edu.

The University of Mississippi Medical Center, located in Jackson, is the state's only academic medical center. University of Mississippi Health Care represents the clinical programs of the Medical Center and includes University Hospitals and Health System and University Physicians, the faculty group practice. UMMC encompasses five health science schools, including medicine, nursing, health related professions, dentistry and graduate studies, as well as the site where University of Mississippi pharmacy students do their clinical training. The Medical Center's threefold mission is to educate tomorrow's health-care professionals, conduct innovative research to improve human health, and to provide the highest quality care available to the state's citizens. A major goal of the Medical Center is the improvement of the health of Mississippians and the elimination of health disparities. For more information, contact the Division of Public Affairs at 601-984-1100 or visit us on the Web at http://publicaffairs.umc.edu/

Jack Mazurak | EurekAlert!
Further information:
http://www.umc.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>