Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic map of African-Americans to aid study of diseases, human evolution

21.07.2011
A group of researchers from the University of Oxford, Harvard Medical School and the University of Mississippi Medical Center has constructed the world's most detailed genetic map, a tool scientists can use to better understand the roots of disease and how DNA is passed generationally to create diversity in the human species.

About 5,000 Jackson-area volunteers were included in a group of nearly 30,000 African-Americans whose genetic information the scientists used to create the map.

The map pinpoints genome locations where people splice together DNA from their mothers and fathers to produce sperm or eggs. That process, known as recombination, mixes DNA from the person's parents and passes it on to his or her children.

Almost every prior genetic map was developed in people of European ancestry. The new map is the first built in African-Americans.

"The world's best genetic map is now built in African-Americans," said David Reich, professor of genetics at Harvard Medical School, who co-led the study with Simon Myers, a lecturer in statistics at the University of Oxford. "This map, built in 30,000 African-Americans who are from studies of heart disease and cancer, has a resolution so high it is now the world's most accurate map."

The findings will be published in the July 21 edition of Nature.

Dr. James Wilson, UMMC professor of medicine and the study's coordinator, said the map holds promise for both broad, genome-wide applications and narrowly focused, single-disease research.

"The map will be helpful in finding the genetic roots of any disease that's affected by inheritance – which is virtually every disease," he said.

For example, studies have shown certain diseases, such as hypertension, affect African-Americans at greater rates than whites, even with other variables like age, weight and socioeconomic level accounted for. The map could be used to better understand why.

A surprise was that the map turned out to be different than those based on people of European and other non-African ancestries.

"The landscape of recombination has shifted in African-Americans compared with Europeans," said Anjali Hinch, the study's first author and a post-graduate student at the Oxford University's Wellcome Trust Centrefor Human Genetics.

Wilson said the African-American genome has become distinct because of recombination in the U.S. during the past two to three centuries.

"African-Americans are a genetically distinguishable group from other continental populations," he said. "African-Americans differ from their African ancestors in that most of them also have genes from European ancestors."

The researchers knew that going into the project. But once they analyzed the breakpoints where recombination occurs in African-American genomes, an unexpected difference appeared.

"Over half of African-Americans carry a version of the biological machinery for recombination that is different to that in Europeans. As a result, African-Americans experience recombination where it almost never occurs in Europeans," Myers said.

Scientists have only recently begun to explore the genetic differences between individuals and populations — and the roles those differences play in human health. In that respect, the first draft of the human genome, completed a decade ago, was only a starting point for understanding the genetic origins of disease.

As researchers begin to parse those differences, a crucial tool is a genetic map, as it determines how some groups of genetic differences tend to be inherited together. Recombination, together with mutation, accounts for all the genetic (and thus physical) variety we see within species. But while mutation refers to the errors introduced into single locations within genomes when cells divide, recombination refers to the process by which huge chunks of chromosomes are stitched together during sexual reproduction.

A key to the success of genetic maps is that this stitching occurs only at specific locations in the genome. In a landmark set of papers, Myers and his colleagues previously identified a particular DNA code, or motif, that attracted the recombination machinery. Knowing the motif, a string of 13 DNA letters, researchers could zero in on the exact locations where recombination typically occurred—the "recombination hotspots."

"When recombination goes wrong, it's known that this can lead to mutations causing congenital diseases, for example diseases like Charcot-Marie-Tooth disease, or certain anemias. We found the same 13-base motif marking many of these disease-mutation sites," said Myers.

Reich, who is also a senior associate member of the Broad Institute, said the places in the genome where there are recombination hotspots can also be disease hotspots.

"Charting recombination hotspots can thus bring us to the places in the genome that cause disease," he said.

The researchers discovered that the 13 base-pair motif responsible for many hotspots in Europeans accounts for only two-thirds as much recombination in African-Americans. They connected the remaining third to a new motif of 17 base pairs, which is recognized by a version of the recombinational machinery that occurs almost exclusively in people of African ancestry.

These findings are expected to help researchers understand the roots of congenital conditions that occur more often in African-Americans (due to mutations at the hotspots that are more common in African-Americans), and also to help discover new disease genes in all populations, because of the ability to map these genes more precisely.

The new map is so accurate specifically because so many African-Americans have both African and European genes, due to racial mixing during the last couple of hundred years. Reich and Myers are experts in analyzing genetic data to reconstruct the mosaic of regions of African and European genetic ancestry in DNA of modern African-Americans.

Using a computer program Reich and Myers wrote specifically to sort the massive amounts of data, Hinch identified places in the genomes of the 30,000 people where switches occurred between African and European ancestry, detecting about 70 per person. These switches correspond to recombination events in the last couple of hundred years, resulting in the more than 2 million recombination events that the researchers used to build the map.

The study was only possible because of collaboration from 81 co-authors from many institutions, using DNA samples from five large studies that had previously been carried out to study common diseases such as heart disease and cancer, funded by the National Institutes of Health, the Department of Defense, and many private foundations.

"All the co-authors worked together in an incredibly collegial way to put together the enormous set of samples and high quality genetic data that made this study a success," Wilson said.

The analytic work for this study was supported by a nearly $1 million grant to Wilson at UMMC from the National Institute of General Medicine through the American Recovery and Reinvestment Act.

The recombination map is available at http://www.well.ox.ac.uk/~anjali/AAmap/

Acknowledgements

The almost 30,000 African-Americans whose DNA was analyzed for this project were participants in five large studies:

The Candidate Gene Association Resource (CARe) is a consortium of nine observational studies of cardiovascular disease and related traits. The consortium includes two Mississippi-based population studies: Atherosclerosis Risk in Communities (ARIC) Study and the Jackson Heart Study. The CARe consortium is supported by the National Heart, Lung, and Blood Institute and diverse other grants.

The African American Breast Cancer Consortium (AABCC) is a consortium of 8 studies of women with and without breast cancer, supported by the National Cancer Institute and diverse other grants.

The African American Prostate Cancer Consortium (AAPCC) is a consortium of 10 studies of men with and without prostate cancer, supported by the National Cancer Institute and diverse other grants.

The African American Lung Cancer Consortium (AALCC) is a consortium of 7 studies of people with and without lung cancer, supported by the National Cancer Institute and diverse other grants.

Many samples also come from the Children's Hospital of Philadelphia (CHOP), which has established a biobank for Philadelphia children to facilitate disease gene discovery.

For a complete list of institutions and granting agencies that supported this work, contact David Cameron at David_Cameron@hms.harvard.edu.

The University of Mississippi Medical Center, located in Jackson, is the state's only academic medical center. University of Mississippi Health Care represents the clinical programs of the Medical Center and includes University Hospitals and Health System and University Physicians, the faculty group practice. UMMC encompasses five health science schools, including medicine, nursing, health related professions, dentistry and graduate studies, as well as the site where University of Mississippi pharmacy students do their clinical training. The Medical Center's threefold mission is to educate tomorrow's health-care professionals, conduct innovative research to improve human health, and to provide the highest quality care available to the state's citizens. A major goal of the Medical Center is the improvement of the health of Mississippians and the elimination of health disparities. For more information, contact the Division of Public Affairs at 601-984-1100 or visit us on the Web at http://publicaffairs.umc.edu/

Jack Mazurak | EurekAlert!
Further information:
http://www.umc.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>