Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic alterations in shared biological pathways as major risk factor for ASD

25.04.2014

Mount Sinai study published in American Journal of Human Genetics

A substantial proportion of risk for developing autism spectrum disorders (ASD), resides in genes that are part of specific, interconnected biological pathways, according to researchers from the Icahn School of Medicine at Mount Sinai, who conducted a broad study of almost 2,500 families in the United States and throughout the world.

The study, titled "Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders," was first published online in the American Journal of Human Genetics on April 24.

ASD affects about one percent of the population in the United States and is characterized by impairments in social interaction and communication, as well as by repetitive and restricted behaviors. ASD ranges from mild to severe levels of impairment, with cognitive function among individuals from above average to intellectual disability.

Previously, ASD has been shown to be highly inheritable, and genomic studies have revealed that that there are various sources of risk for ASD, including large abnormalities in whole chromosomes, deletions or duplications in sections of DNA – called copy number variants (CNVs), and even changes of single nucleotides (SNVs) within a gene; genes contain instructions to produce proteins that have various functions in the cell.

The researchers reported numerous CNVs affecting genes, and found that these genes are part of similar cellular pathways involved in brain development, synapse function and chromatin regulation. Individuals with ASD carried more of these CNVs than individuals in the control group, and some of them were inherited while others were only present in offspring with ASD.

An earlier study, results of which were first published in 2010, highlighted a subset of these findings within a cohort of approximately 1,000 families in the U.S. and Europe; this larger study has expanded that cohort to nearly 2,500 families, each comprising "trios" of two parents and one child. By further aggregating CNVs and SNVs (the latter identified in other studies), Mount Sinai researchers discovered many additional genes and pathways involved in ASD.

"We hope that these new findings will help group individuals with ASD based upon their genetic causes and lead to earlier diagnosis, and smarter, more focused therapies and interventions for autism spectrum disorders," said first author Dalila Pinto, PhD, Assistant Professor of Psychiatry, and Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai.

Dr. Pinto is a Seaver Foundation Faculty Fellow, and a member of the Mindich Child Health & Development Institute, the Icahn Institute for Genomics and Multiscale Biology, and the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai; other Mount Sinai researchers on this study include Mafalda Barbosa, Graduate Student in Psychiatry; Xiao Xu, PhD, Postdoctoral Fellow in Psychiatry; Alexander Kolevzon, MD, Clinical Director of the Seaver Autism Center and Associate Professor of Psychiatry and Pediatrics; and Joseph D. Buxbaum, PhD, Director of the Seaver Autism Center, Vice Chair for Research in Psychiatry, and Professor of Psychiatry, Neuroscience, and Genetics and Genomic Sciences.

###

This study was jointly supported through the main funders of the International Autism Genome Project: Autism Speaks, the Health Research Board (Ireland), the Hillbrand Foundations, the Genome Canada, the Ontario Genomics Institute, and the Canadian Institutes of Health Research.

Sid Dinsay | Eurek Alert!
Further information:
http://www.mountsinai.org

Further reports about: ASD Autism Genetic Genetics Health Medicine Seaver alterations autism spectrum disorders genes pathways

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>