Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes and Nutrition Influence Caste in Unusual Species of Harvester Ant

19.08.2008
Is nature or nurture more important in determining an ant’s status in the colony?

That is the question researchers posed in a new study of the Florida harvester ant, Pogonomyrmex badius, a resilient creature found in many parts of the southeastern United States. The answer? Both nature (i.e. the ant’s genetic makeup) and nurture (what it eats, for example) play a role in determining its fate.

The research team included scientists from the University of Illinois, the University of Arizona, Linfield College and Arizona State University. The findings were published online on August 14 by American Naturalist.

In the hierarchy of an ant colony, status is everything. If you are a “gyne” and thus destined to become a queen, you can expect the very best accommodations and generous portions at mealtimes. If you are a worker, you must be ready to sacrifice your health, welfare and reproductive capacity for the betterment of the colony.

The researchers were drawn to P. badius because its social structure is more complex than most. Its caste system includes two categories of workers: majors and minors. Major workers are nearly four times heavier than minors, but the minors outnumber them by 20:1. Gynes (pronounced “JINES”) are about eight times heavier than minors.

The researchers wanted to know whether the ant’s genetic endowment dictated its caste and size or whether nutrition also played a role.

“Basically what we found is that things are more complicated than previously thought,” said Christopher R. Smith, a former graduate student in the School of Integrative Biology at Illinois and corresponding author on the study. “Our study shows that there is a large genetic component to caste determination, but that there is also a very strong environmental component.”

The researchers found that the genetic makeup of the colonies they studied was quite diverse. The average P. badius queen had mated with at least 20 males (the norm for ants is one to five). The genetic analysis also suggested that the offspring of most males could develop into any caste, but that some male lineages (patrilines) were more likely to become gynes while others were more likely to become major or minor workers.

A recent study of honey bees found that colonies with a lot of genetic diversity were better at nest building and finding and storing food than their less diverse counterparts.

While historically, it has been assumed that castes are environmentally determined, recent studies on Pogonomyrmex harvester ants have found colonies in which becoming a worker or gyne is determined exclusively by genetic differences. This constrains the colony’s ability to adaptively adjust to environmental realities. For example, colonies that have few workers and yet produce many larvae that are destined to become gynes fail to grow to maturity because they lack the resources to feed the voracious gynes. On the other hand, colonies that can respond to environmental factors and alter the ratio of the castes they produce are often more successful in a changing environment. They can produce more workers when resources are scarce and more gynes when food is plentiful.

“Flexibility in caste determination is essential as it allows the colony to respond to changes in need or environmental fluctuations,” said principal investigator Andrew Suarez, an Illinois professor of animal biology and of entomology and an affiliate of the Institute for Genomic Biology.

In the new study, the researchers analyzed what the P. badius ants were eating. Using stable isotope analysis, which looks for different versions of elements such as nitrogen and carbon in the diet, the researchers could tell whether individual ants were eating higher or lower on the food chain. Those at the top would have a more carnivorous diet, with a higher nitrogen content in their foods. They would also ingest more of a specific isotope of nitrogen in their foods than those eating seeds or plants.

The analysis showed that gynes were at the top of the dietary food chain and had the highest proportion of nitrogen in their diets. The minor workers had the lowest nitrogen content and were eating primarily from plant rather than animal sources. The majors were getting a better diet than the minors, but were not eating as well as the gynes.

“Differences in the nutrition that an individual assimilated during larval growth are strong predictors of caste,” the authors wrote.

The researchers also found that genetic differences predict size in major workers and gynes, but not minor workers. Minor workers increase in size only as the colony grows, probably because larger colonies have more resources available to them.

The exact mechanisms by which genetics or diet influence caste are not yet known, Smith said, but in P. badius both play an important role. There may be a hormonal response, for example, that is driven in part by genetics and in part by nutrition that determines the trajectory of an individual ant’s development, he said. Smith, currently a post-doctoral fellow at Arizona State University's School of Life Sciences, continues to investigate how genetic differences interact with variation in diet to generate so much diversity in the form and function of all ants.

The fact that nutrition can alter the genetic destiny of some individuals in the colony probably allows the colony to adjust the ratio of workers to gynes to survive in tough times, he said.

“But there are still ‘haves’ and ‘have nots’ in the colony: those genetic variants who have a reproductive advantage and those that don’t,” Smith said. “The ant colony and human society have striking parallels.”

Smith quotes Marx and Engels, who theorized in their manifesto: “The history of all past society has consisted in the development of class antagonisms… the exploitation of one part of society by the other.”

Diana Yates | Newswise Science News
Further information:
http://www.illinois.edu
http://www.asu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>